Optimizing Small Multi-Rotor Unmanned Aircraft

Optimizing Small Multi-Rotor Unmanned Aircraft
Title Optimizing Small Multi-Rotor Unmanned Aircraft PDF eBook
Author Stephen D. Prior
Publisher CRC Press
Pages 129
Release 2018-09-18
Genre Technology & Engineering
ISBN 0429766769

Download Optimizing Small Multi-Rotor Unmanned Aircraft Book in PDF, Epub and Kindle

This design guide was written to capture the author’s practical experience of designing, building and testing multi-rotor drone systems over the past decade. The lack of one single source of useful information meant that the past 10 years has been a steep learning curve, a lot of self-tuition and many trial and error tests. Lessons learnt the hard way are not always the best way to learn. This book will be useful for the amateur drone pilot who wants to build their own system from first principles, as well as the academic researcher investigating novel design concepts and future drone applications.

Optimisation of Small Multi-rotor Unmanned Aerial Vehicle Capabilities Through Battery Sub-division and the Deployment of Communication Nodes

Optimisation of Small Multi-rotor Unmanned Aerial Vehicle Capabilities Through Battery Sub-division and the Deployment of Communication Nodes
Title Optimisation of Small Multi-rotor Unmanned Aerial Vehicle Capabilities Through Battery Sub-division and the Deployment of Communication Nodes PDF eBook
Author Analiza Abdilla
Publisher
Pages 218
Release 2016
Genre
ISBN

Download Optimisation of Small Multi-rotor Unmanned Aerial Vehicle Capabilities Through Battery Sub-division and the Deployment of Communication Nodes Book in PDF, Epub and Kindle

Characterization and Optimization of UAV Power System for Aerial and Submersible Multi-medium Multirotor Vehicle

Characterization and Optimization of UAV Power System for Aerial and Submersible Multi-medium Multirotor Vehicle
Title Characterization and Optimization of UAV Power System for Aerial and Submersible Multi-medium Multirotor Vehicle PDF eBook
Author Parth V. Soni
Publisher
Pages 66
Release 2016
Genre Drone aircraft
ISBN

Download Characterization and Optimization of UAV Power System for Aerial and Submersible Multi-medium Multirotor Vehicle Book in PDF, Epub and Kindle

Even as an emerging technology, Unmanned Aerial Vehicles (UAVs) have had a tremendous impact on the world. From the way wars are fought, to the way we take selfies, drones are well on their way to revolutionizing our daily lives. One of the most innovative applications of these vehicles in the Naviator submersible-UAV. This unique multirotor is capable of aerial flight and underwater operations with seamless Air-Water transitions. In this thesis, the power system of a multirotor UAS is characterized using standard performance models with the goal of designing and optimizing the systems of a new Naviator V5 prototype. Test beds were created to collect data on BLDC motors and propellers and their performance was assessed in air and water. Theoretical models using BEM theory and the 3-constant motor model were validated for their accuracy. Experiments found that RC air propellers are similarly efficient in air and water and BLDC motor performance is partially diminished due to the higher viscosity of water. The effects of input voltage, throttle, Kv rating, and motor size were also evaluated using motor torque curves. Using this data, an optimal power system for the Naviator V5 prototype was designed, tested, and evaluated.

Small Unmanned Aircraft

Small Unmanned Aircraft
Title Small Unmanned Aircraft PDF eBook
Author Randal W. Beard
Publisher Princeton University Press
Pages 317
Release 2012-02-26
Genre Technology & Engineering
ISBN 1400840600

Download Small Unmanned Aircraft Book in PDF, Epub and Kindle

Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.

Unmanned Aerial Systems

Unmanned Aerial Systems
Title Unmanned Aerial Systems PDF eBook
Author Anis Koubaa
Publisher Academic Press
Pages 652
Release 2021-01-21
Genre Technology & Engineering
ISBN 0128202777

Download Unmanned Aerial Systems Book in PDF, Epub and Kindle

Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. Covers some of the most innovative approaches to drones Provides the latest state-of-the-art research and development surrounding unmanned aerial systems Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area

Unmanned Aerial Vehicles Applications: Challenges and Trends

Unmanned Aerial Vehicles Applications: Challenges and Trends
Title Unmanned Aerial Vehicles Applications: Challenges and Trends PDF eBook
Author Mohamed Abdelkader
Publisher Springer Nature
Pages 404
Release 2023-06-29
Genre Technology & Engineering
ISBN 3031320379

Download Unmanned Aerial Vehicles Applications: Challenges and Trends Book in PDF, Epub and Kindle

This is a book that covers different aspects of UAV technology, including design and development, applications, security and communication, and legal and regulatory challenges. The book is divided into 13 chapters, grouped into four parts. The first part discusses the design and development of UAVs, including ROS customization, structured designs, and intelligent trajectory tracking. The second part explores diverse applications such as search and rescue, monitoring distributed parameter systems, and leveraging drone technology in accounting. The third part focuses on security and communication challenges, including security concerns, multi-UAV systems, and communications security. The final part delves into the legal and regulatory challenges of integrating UAVs into non-segregated airspace. The book serves as a valuable resource for researchers, practitioners, and students in the field of unmanned aerial vehicles, providing a comprehensive understanding of UAV technology and its applications.

Modeling and Control of Multi-Rotor UAVS

Modeling and Control of Multi-Rotor UAVS
Title Modeling and Control of Multi-Rotor UAVS PDF eBook
Author Mojtaba Hedayatpour
Publisher
Pages 0
Release 2018
Genre
ISBN

Download Modeling and Control of Multi-Rotor UAVS Book in PDF, Epub and Kindle

Recently, a class of unmanned aerial vehicles (UAVs) called multi-rotors has gained significant attention. Despite remarkable progress in control and design of multirotors in the past decade, two issues, namely endurance and safety, still remain of main concerns. This thesis mainly aims at investigating about modeling and control of multi-rotor UAVs while focusing on safety, performance and optimal design. A complete model for forces and moments of a propeller in presence of freestream is presented which helps to derive mathematical models for two different types of multi-rotor UAVs: i) quadcopters with angled thrust vector; and ii) spinning multirotors with streamline-shape fuselage. Afterwards, equilibrium states and the constraints for both types of vehicles are introduced and using control design techniques, we develop ight control strategies to control attitude and position of the vehicle. The following control strategies are developed for: i) quadcopters with no rotor failures; ii) quadcopters with one rotor failure; and iii) spinning multi-rotors. Also, the performance of the proposed multi-rotor UAVs is investigated in three different topics: i) optimality of the hover solutions in terms of power consumption; ii) stability of the vehicle in different configurations; and iii) controller performance in trajectory tracking. First, this section leads to introducing six different configurations for quadcopters ranking from the most stable to the most maneuverable which are presented analytically for the first time. Second, a specific configuration for a quadcopter is introduced that leads to the minimum power consumption during a yaw-rate-resolved hovering after a rotor failure. Third, we present optimal design for spinning multi-rotors featuring minimum power consumption and best trajectory tracking performance. Furthermore, a framework for controlled emergency landing of a quadcopter, with a rotor failure and away from sensitive areas, is presented. Given a 3D representation of the environment, an optimal flight path towards a safe crash landing spot, while avoiding obstacles, is developed using RRT* algorithm. The cost function for determining the best landing spot consists of: (i) clearance from the obstacles; and (ii) distance from the landing spot. Finally, the framework is tested via nonlinear simulations and results are presented.