Optimized Feature Selection for Enhancing Lung Cancer Prediction Using Machine Learning Techniques

Optimized Feature Selection for Enhancing Lung Cancer Prediction Using Machine Learning Techniques
Title Optimized Feature Selection for Enhancing Lung Cancer Prediction Using Machine Learning Techniques PDF eBook
Author Shanthi S
Publisher Ary Publisher
Pages 0
Release 2023-02-25
Genre
ISBN 9782572444642

Download Optimized Feature Selection for Enhancing Lung Cancer Prediction Using Machine Learning Techniques Book in PDF, Epub and Kindle

Lung cancer is a major cause of cancer-related deaths worldwide. Machine learning techniques have shown promising results in the early detection and prediction of lung cancer. However, high-dimensional data, such as gene expression profiles, can introduce noise and decrease the classification accuracy of machine learning models. Feature selection techniques can alleviate this issue by identifying the most relevant and informative features, leading to better model performance. Optimized feature selection techniques can enhance the prediction accuracy of lung cancer using machine learning algorithms. Support vector machines, random forest, and artificial neural networks are commonly used algorithms for lung cancer prediction. By optimizing feature selection, these models can be trained with the most informative features, reducing overfitting and improving classification accuracy. Cross-validation techniques can also be used to evaluate the performance of feature selection and machine learning algorithms. The integration of optimized feature selection with machine learning techniques can provide an accurate and reliable lung cancer prediction model, which has the potential to improve early detection and precision medicine for lung cancer patients. Overall, optimized feature selection for enhancing lung cancer prediction using machine learning techniques is a promising approach to improving patient outcomes and reducing the global burden of lung cancer.

Evolutionary Machine Learning Techniques

Evolutionary Machine Learning Techniques
Title Evolutionary Machine Learning Techniques PDF eBook
Author Seyedali Mirjalili
Publisher Springer Nature
Pages 287
Release 2019-11-11
Genre Technology & Engineering
ISBN 9813299908

Download Evolutionary Machine Learning Techniques Book in PDF, Epub and Kindle

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.

Artificial Intelligence Techniques for Advanced Computing Applications

Artificial Intelligence Techniques for Advanced Computing Applications
Title Artificial Intelligence Techniques for Advanced Computing Applications PDF eBook
Author D. Jude Hemanth
Publisher Springer Nature
Pages 531
Release 2020-07-23
Genre Technology & Engineering
ISBN 9811553297

Download Artificial Intelligence Techniques for Advanced Computing Applications Book in PDF, Epub and Kindle

This book features a collection of high-quality research papers presented at the International Conference on Advanced Computing Technology (ICACT 2020), held at the SRM Institute of Science and Technology, Chennai, India, on 23–24 January 2020. It covers the areas of computational intelligence, artificial intelligence, machine learning, deep learning, big data, and applications of artificial intelligence in networking, IoT and bioinformatics

Optimized Predictive Models in Health Care Using Machine Learning

Optimized Predictive Models in Health Care Using Machine Learning
Title Optimized Predictive Models in Health Care Using Machine Learning PDF eBook
Author Sandeep Kumar
Publisher John Wiley & Sons
Pages 388
Release 2024-03-06
Genre Computers
ISBN 1394174624

Download Optimized Predictive Models in Health Care Using Machine Learning Book in PDF, Epub and Kindle

OPTIMIZED PREDICTIVE MODELS IN HEALTH CARE USING MACHINE LEARNING This book is a comprehensive guide to developing and implementing optimized predictive models in healthcare using machine learning and is a required resource for researchers, healthcare professionals, and students who wish to know more about real-time applications. The book focuses on how humans and computers interact to ever-increasing levels of complexity and simplicity and provides content on the theory of optimized predictive model design, evaluation, and user diversity. Predictive modeling, a field of machine learning, has emerged as a powerful tool in healthcare for identifying high-risk patients, predicting disease progression, and optimizing treatment plans. By leveraging data from various sources, predictive models can help healthcare providers make informed decisions, resulting in better patient outcomes and reduced costs. Other essential features of the book include: provides detailed guidance on data collection and preprocessing, emphasizing the importance of collecting accurate and reliable data; explains how to transform raw data into meaningful features that can be used to improve the accuracy of predictive models; gives a detailed overview of machine learning algorithms for predictive modeling in healthcare, discussing the pros and cons of different algorithms and how to choose the best one for a specific application; emphasizes validating and evaluating predictive models; provides a comprehensive overview of validation and evaluation techniques and how to evaluate the performance of predictive models using a range of metrics; discusses the challenges and limitations of predictive modeling in healthcare; highlights the ethical and legal considerations that must be considered when developing predictive models and the potential biases that can arise in those models. Audience The book will be read by a wide range of professionals who are involved in healthcare, data science, and machine learning.

Handbook of Machine Learning for Computational Optimization

Handbook of Machine Learning for Computational Optimization
Title Handbook of Machine Learning for Computational Optimization PDF eBook
Author Vishal Jain
Publisher CRC Press
Pages 295
Release 2021-11-02
Genre Business & Economics
ISBN 100045567X

Download Handbook of Machine Learning for Computational Optimization Book in PDF, Epub and Kindle

Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.

Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention

Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention
Title Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention PDF eBook
Author Management Association, Information Resources
Publisher IGI Global
Pages 1671
Release 2022-09-09
Genre Medical
ISBN 1668475456

Download Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention Book in PDF, Epub and Kindle

Medical imaging provides medical professionals the unique ability to investigate and diagnose injuries and illnesses without being intrusive. With the surge of technological advancement in recent years, the practice of medical imaging has only been improved through these technologies and procedures. It is essential to examine these innovations in medical imaging to implement and improve the practice around the world. The Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention investigates and presents the recent innovations, procedures, and technologies implemented in medical imaging. Covering topics such as automatic detection, simulation in medical education, and neural networks, this major reference work is an excellent resource for radiologists, medical professionals, hospital administrators, medical educators and students, librarians, researchers, and academicians.

Innovations in Smart Cities Applications Edition 2

Innovations in Smart Cities Applications Edition 2
Title Innovations in Smart Cities Applications Edition 2 PDF eBook
Author Mohamed Ben Ahmed
Publisher Springer
Pages 1239
Release 2019-02-06
Genre Technology & Engineering
ISBN 3030111962

Download Innovations in Smart Cities Applications Edition 2 Book in PDF, Epub and Kindle

This book highlights cutting-edge research presented at the third installment of the International Conference on Smart City Applications (SCA2018), held in Tétouan, Morocco on October 10–11, 2018. It presents original research results, new ideas, and practical lessons learned that touch on all aspects of smart city applications. The respective papers share new and highly original results by leading experts on IoT, Big Data, and Cloud technologies, and address a broad range of key challenges in smart cities, including Smart Education and Intelligent Learning Systems, Smart Healthcare, Smart Building and Home Automation, Smart Environment and Smart Agriculture, Smart Economy and Digital Business, and Information Technologies and Computer Science, among others. In addition, various novel proposals regarding smart cities are discussed. Gathering peer-reviewed chapters written by prominent researchers from around the globe, the book offers an invaluable instructional and research tool for courses on computer and urban sciences; students and practitioners in computer science, information science, technology studies and urban management studies will find it particularly useful. Further, the book is an excellent reference guide for professionals and researchers working in mobility, education, governance, energy, the environment and computer sciences.