Optimization and Games for Controllable Markov Chains
Title | Optimization and Games for Controllable Markov Chains PDF eBook |
Author | Julio B. Clempner |
Publisher | Springer Nature |
Pages | 340 |
Release | 2023-12-13 |
Genre | Technology & Engineering |
ISBN | 3031435753 |
This book considers a class of ergodic finite controllable Markov's chains. The main idea behind the method, described in this book, is to develop the original discrete optimization problems (or game models) in the space of randomized formulations, where the variables stand in for the distributions (mixed strategies or preferences) of the original discrete (pure) strategies in the use. The following suppositions are made: a finite state space, a limited action space, continuity of the probabilities and rewards associated with the actions, and a necessity for accessibility. These hypotheses lead to the existence of an optimal policy. The best course of action is always stationary. It is either simple (i.e., nonrandomized stationary) or composed of two nonrandomized policies, which is equivalent to randomly selecting one of two simple policies throughout each epoch by tossing a biased coin. As a bonus, the optimization procedure just has to repeatedly solve the time-average dynamic programming equation, making it theoretically feasible to choose the optimum course of action under the global restriction. In the ergodic cases the state distributions, generated by the corresponding transition equations, exponentially quickly converge to their stationary (final) values. This makes it possible to employ all widely used optimization methods (such as Gradient-like procedures, Extra-proximal method, Lagrange's multipliers, Tikhonov's regularization), including the related numerical techniques. In the book we tackle different problems and theoretical Markov models like controllable and ergodic Markov chains, multi-objective Pareto front solutions, partially observable Markov chains, continuous-time Markov chains, Nash equilibrium and Stackelberg equilibrium, Lyapunov-like function in Markov chains, Best-reply strategy, Bayesian incentive-compatible mechanisms, Bayesian Partially Observable Markov Games, bargaining solutions for Nash and Kalai-Smorodinsky formulations, multi-traffic signal-control synchronization problem, Rubinstein's non-cooperative bargaining solutions, the transfer pricing problem as bargaining.
Optimization, Control, and Applications of Stochastic Systems
Title | Optimization, Control, and Applications of Stochastic Systems PDF eBook |
Author | Daniel Hernández-Hernández |
Publisher | Springer Science & Business Media |
Pages | 331 |
Release | 2012-08-15 |
Genre | Science |
ISBN | 0817683372 |
This volume provides a general overview of discrete- and continuous-time Markov control processes and stochastic games, along with a look at the range of applications of stochastic control and some of its recent theoretical developments. These topics include various aspects of dynamic programming, approximation algorithms, and infinite-dimensional linear programming. In all, the work comprises 18 carefully selected papers written by experts in their respective fields. Optimization, Control, and Applications of Stochastic Systems will be a valuable resource for all practitioners, researchers, and professionals in applied mathematics and operations research who work in the areas of stochastic control, mathematical finance, queueing theory, and inventory systems. It may also serve as a supplemental text for graduate courses in optimal control and dynamic games.
Controlled Markov Processes and Viscosity Solutions
Title | Controlled Markov Processes and Viscosity Solutions PDF eBook |
Author | Wendell H. Fleming |
Publisher | Springer Science & Business Media |
Pages | 436 |
Release | 2006-02-04 |
Genre | Mathematics |
ISBN | 0387310711 |
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
Selected Topics on Continuous-time Controlled Markov Chains and Markov Games
Title | Selected Topics on Continuous-time Controlled Markov Chains and Markov Games PDF eBook |
Author | Tomás Prieto-Rumeau |
Publisher | World Scientific |
Pages | 292 |
Release | 2012 |
Genre | Mathematics |
ISBN | 1848168489 |
This book concerns continuous-time controlled Markov chains, also known as continuous-time Markov decision processes. They form a class of stochastic control problems in which a single decision-maker wishes to optimize a given objective function. This book is also concerned with Markov games, where two decision-makers (or players) try to optimize their own objective function. Both decision-making processes appear in a large number of applications in economics, operations research, engineering, and computer science, among other areas.An extensive, self-contained, up-to-date analysis of basic optimality criteria (such as discounted and average reward), and advanced optimality criteria (e.g., bias, overtaking, sensitive discount, and Blackwell optimality) is presented. A particular emphasis is made on the application of the results herein: algorithmic and computational issues are discussed, and applications to population models and epidemic processes are shown.This book is addressed to students and researchers in the fields of stochastic control and stochastic games. Moreover, it could be of interest also to undergraduate and beginning graduate students because the reader is not supposed to have a high mathematical background: a working knowledge of calculus, linear algebra, probability, and continuous-time Markov chains should suffice to understand the contents of the book.
Markov Processes and Controlled Markov Chains
Title | Markov Processes and Controlled Markov Chains PDF eBook |
Author | Zhenting Hou |
Publisher | Springer Science & Business Media |
Pages | 501 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 146130265X |
The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South American and Asian scholars.
SIAM Journal on Control and Optimization
Title | SIAM Journal on Control and Optimization PDF eBook |
Author | Society for Industrial and Applied Mathematics |
Publisher | |
Pages | 810 |
Release | 2007 |
Genre | Control theory |
ISBN |
Foundations of Average-Cost Nonhomogeneous Controlled Markov Chains
Title | Foundations of Average-Cost Nonhomogeneous Controlled Markov Chains PDF eBook |
Author | Xi-Ren Cao |
Publisher | Springer Nature |
Pages | 128 |
Release | 2020-09-09 |
Genre | Technology & Engineering |
ISBN | 3030566781 |
This Springer brief addresses the challenges encountered in the study of the optimization of time-nonhomogeneous Markov chains. It develops new insights and new methodologies for systems in which concepts such as stationarity, ergodicity, periodicity and connectivity do not apply. This brief introduces the novel concept of confluencity and applies a relative optimization approach. It develops a comprehensive theory for optimization of the long-run average of time-nonhomogeneous Markov chains. The book shows that confluencity is the most fundamental concept in optimization, and that relative optimization is more suitable for treating the systems under consideration than standard ideas of dynamic programming. Using confluencity and relative optimization, the author classifies states as confluent or branching and shows how the under-selectivity issue of the long-run average can be easily addressed, multi-class optimization implemented, and Nth biases and Blackwell optimality conditions derived. These results are presented in a book for the first time and so may enhance the understanding of optimization and motivate new research ideas in the area.