Optimal Transport Networks in Nature

Optimal Transport Networks in Nature
Title Optimal Transport Networks in Nature PDF eBook
Author Natalya Kizilova
Publisher World Scientific Publishing Company
Pages 200
Release 2010
Genre Medical
ISBN 9789812838735

Download Optimal Transport Networks in Nature Book in PDF, Epub and Kindle

This unique book presents a broad range of data on geometry and topology of long-distance liquid transport networks in nature including circulatory and respiratory systems of mammals, trophic fluid transport systems of animals, and conducting systems of higher plants. It is the very first book where evidence of the common design principles and optimal properties of the transportation networks of vascular plants and animals is provided. The book also provides a comprehensive comparative study of the recent measurement results and data analysis, including unique data obtained by the author to conduct systems of plant leaves of different shapes, sizes, venation types and evolutionary ages. It was shown that the mathematical solutions of the optimization problem for the animal and plant conducting systems lead to the same design principles, despite different physical conditions of the fluid transport.

Optimal Transportation Networks

Optimal Transportation Networks
Title Optimal Transportation Networks PDF eBook
Author Marc Bernot
Publisher Springer Science & Business Media
Pages 204
Release 2009
Genre Business & Economics
ISBN 3540693149

Download Optimal Transportation Networks Book in PDF, Epub and Kindle

The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

Optimal Transport

Optimal Transport
Title Optimal Transport PDF eBook
Author Cédric Villani
Publisher Springer Science & Business Media
Pages 970
Release 2008-10-26
Genre Mathematics
ISBN 3540710507

Download Optimal Transport Book in PDF, Epub and Kindle

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.

Nature-Inspired Computing and Optimization

Nature-Inspired Computing and Optimization
Title Nature-Inspired Computing and Optimization PDF eBook
Author Srikanta Patnaik
Publisher Springer
Pages 506
Release 2017-03-07
Genre Technology & Engineering
ISBN 3319509209

Download Nature-Inspired Computing and Optimization Book in PDF, Epub and Kindle

The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.

Nature's Fabric

Nature's Fabric
Title Nature's Fabric PDF eBook
Author David Lee
Publisher University of Chicago Press
Pages 469
Release 2017-09-28
Genre Nature
ISBN 022618059X

Download Nature's Fabric Book in PDF, Epub and Kindle

Leaves are all around us—in backyards, cascading from window boxes, even emerging from small cracks in city sidewalks given the slightest glint of sunlight. Perhaps because they are everywhere, it’s easy to overlook the humble leaf, but a close look at them provides one of the most enjoyable ways to connect with the natural world. A lush, incredibly informative tribute to the leaf, Nature’s Fabric offers an introduction to the science of leaves, weaving biology and chemistry with the history of the deep connection we feel with all things growing and green. Leaves come in a staggering variety of textures and shapes: they can be smooth or rough, their edges smooth, lobed, or with tiny teeth. They have adapted to their environments in remarkable, often stunningly beautiful ways—from the leaves of carnivorous plants, which have tiny “trigger hairs” that signal the trap to close, to the impressive defense strategies some leaves have evolved to reduce their consumption. (Recent studies suggest, for example, that some plants can detect chewing vibrations and mobilize potent chemical defenses.) In many cases, we’ve learned from the extraordinary adaptations of leaves, such as the invention of new self-cleaning surfaces inspired by the slippery coating found on leaves. But we owe much more to leaves, and Lee also calls our attention back to the fact that that our very lives—and the lives of all on the planet—depend on them. Not only is foliage is the ultimate source of food for every living thing on land, its capacity to cycle carbon dioxide and oxygen can be considered among evolution’s most important achievements—and one that is critical in mitigating global climate change. Taking readers through major topics like these while not losing sight of the small wonders of nature we see every day—if you’d like to identify a favorite leaf, Lee’s glossary of leaf characteristics means you won’t be left out on a limb—Nature’s Fabric is eminently readable and full of intriguing research, sure to enhance your appreciation for these extraordinary green machines.

Topics in Optimal Transportation

Topics in Optimal Transportation
Title Topics in Optimal Transportation PDF eBook
Author Cédric Villani
Publisher American Mathematical Soc.
Pages 370
Release 2021-08-25
Genre Education
ISBN 1470467267

Download Topics in Optimal Transportation Book in PDF, Epub and Kindle

This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.

Optimal Transport Strategies

Optimal Transport Strategies
Title Optimal Transport Strategies PDF eBook
Author Wonjung Kim (Ph. D.)
Publisher
Pages 112
Release 2013
Genre
ISBN

Download Optimal Transport Strategies Book in PDF, Epub and Kindle

It is generally presupposed that the shapes and mechanisms encountered in nature have evolved in such a way as to maximize the robustness of a species. However, most such optimization problems arising in biology are sufficiently complex that it is neither clear what is being optimized, nor what are the relevant constraints. We here consider a number of natural fluid transport systems that may be framed in terms of constrained optimization problems. We first examine natural drinking strategies. We classify the drinking strategies of a broad range of creatures according to the principal forces involved, and present physical pictures for each style. Simple scaling arguments are developed and tested against existing data. While suction is the most common drinking strategy, various alternative styles have evolved among creatures whose morphological, physiological and environmental constraints preclude it. Many small creatures rely on relatively subtle capillary effects for fluid uptake. Particular attention is given to nectar drinking strategies. Nectar drinkers must feed quickly and efficiently due to the threat of predation. While the sweetest nectar offers the greatest energetic rewards, the sharp increase of viscosity with sugar concentration makes it the most difficult to transport. An optimal sugar concentration is thus expected for which the energy intake rate is maximized. An extensive data set indicates that the sugar concentration that optimizes energy transport depends exclusively on the drinking technique employed. We identify three nectar drinking techniques: active suction, capillary suction, and viscous dipping and rationalize the reported optimal concentrations for each through consideration of the appropriate constrained optimization problem. Blood flow in vertebrates and phloem flow in plants are known to be optimized for efficient transport of oxygen and sugar, respectively. Efficient transport of material is similarly advantageous in engineered transport systems such as traffic and wireless networks. We thus develop a general framework for determining the concentration that maximizes the material flow in a number of transport systems.