Mechanics of Optimal Structural Design
Title | Mechanics of Optimal Structural Design PDF eBook |
Author | David W. A. Rees |
Publisher | John Wiley & Sons |
Pages | 582 |
Release | 2009-12-21 |
Genre | Technology & Engineering |
ISBN | 9780470747810 |
In a global climate where engineers are increasingly under pressure to make the most of limited resources, there are huge potential financial and environmental benefits to be gained by designing for minimum weight. With Mechanics of Optimal Structural Design, David Rees brings the original approach of weight optimization to the existing structural design literature, providing a methodology for attaining minimum weight of a range of structures under their working loads. He addresses the current gap in education between formal structural design teaching at undergraduate level and the practical application of this knowledge in industry, describing the analytical techniques that students need to understand before applying computational techniques that can be easy to misuse without this grounding. Shows engineers how to approach structural design for minimum weight in clear, concise terms Contains many new least-weight design techniques, taking into consideration different manners of loading and including new topics that have not previously been considered within the least-weight theme Considers the demands for least-weight road, air and space vehicles for the future Enhanced by illustrative worked examples to enlighten the theory, exercises at the end of each chapter that enable application of the theory covered, and an accompanying website with worked examples and solutions housed at www.wiley.com/go/rees The least-weight analyses of basic structural elements ensure a spread of interest with many applications in mechanical, civil, aircraft and automobile engineering. Consequently, this book fills the gap between the basic material taught at undergraduate level and other approaches to optimum design, for example computer simulations and the finite element method.
Optimal Structural Design under Stability Constraints
Title | Optimal Structural Design under Stability Constraints PDF eBook |
Author | Antoni Gajewski |
Publisher | Springer Science & Business Media |
Pages | 480 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9400927541 |
The first optimal design problem for an elastic column subject to buckling was formulated by Lagrange over 200 years ago. However, rapid development of structural optimization under stability constraints occurred only in the last twenty years. In numerous optimal structural design problems the stability phenomenon becomes one of the most important factors, particularly for slender and thin-walled elements of aerospace structures, ships, precision machines, tall buildings etc. In engineering practice stability constraints appear more often than it might be expected; even when designing a simple beam of constant width and variable depth, the width - if regarded as a design variable - is finally determined by a stability constraint (lateral stability). Mathematically, optimal structural design under stability constraints usually leads to optimization with respect to eigenvalues, but some cases fall even beyond this type of problems. A total of over 70 books has been devoted to structural optimization as yet, but none of them has treated stability constraints in a sufficiently broad and comprehensive manner. The purpose of the present book is to fill this gap. The contents include a discussion of the basic structural stability and structural optimization problems and the pertinent solution methods, followed by a systematic review of solutions obtained for columns, arches, bar systems, plates, shells and thin-walled bars. A unified approach based on Pontryagin's maximum principle is employed inasmuch as possible, at least to problems of columns, arches and plates. Parametric optimization is discussed as well.
Problems and Methods of Optimal Structural Design
Title | Problems and Methods of Optimal Structural Design PDF eBook |
Author | Nikolai Vladimirovich Banichuk |
Publisher | Springer Science & Business Media |
Pages | 326 |
Release | 2013-03-13 |
Genre | Computers |
ISBN | 1461336767 |
The author offers a systematic and careful development of many aspects of structural optimization, particularly for beams and plates. Some of the results are new and some have appeared only in specialized Soviet journals, or as pro ceedings of conferences, and are not easily accessible to Western engineers and mathematicians. Some aspects of the theory presented here, such as optimiza tion of anisotropic properties of elastic structural elements, have not been con sidered to any extent by Western research engineers. The author's treatment is "classical", i.e., employing classical analysis. Classical calculus of variations, the complex variables approach, and the Kolosov Muskhelishvili theory are the basic techniques used. He derives many results that are of interest to practical structural engineers, such as optimum designs of structural elements submerged in a flowing fluid (which is of obvious interest in aircraft design, in ship building, in designing turbines, etc.). Optimization with incomplete information concerning the loads (which is the case in a great majority of practical design considerations) is treated thoroughly. For example, one can only estimate the weight of the traffic on a bridge, the wind load, the additional loads if a river floods, or possible earthquake loads.
Optimal Design
Title | Optimal Design PDF eBook |
Author | Valer Vasiliev |
Publisher | CRC Press |
Pages | 626 |
Release | 1999-03-22 |
Genre | Technology & Engineering |
ISBN | 9781566766869 |
Optimal Structural Design can be referred to as one of the most important and promising branches of applied mathematics and mechanics. This book reflects the culmination of Russian activity in the field of optimal structural design.
Topology Design Methods for Structural Optimization
Title | Topology Design Methods for Structural Optimization PDF eBook |
Author | Osvaldo M. Querin |
Publisher | Butterworth-Heinemann |
Pages | 205 |
Release | 2017-06-09 |
Genre | Technology & Engineering |
ISBN | 0080999891 |
Topology Design Methods for Structural Optimization provides engineers with a basic set of design tools for the development of 2D and 3D structures subjected to single and multi-load cases and experiencing linear elastic conditions. Written by an expert team who has collaborated over the past decade to develop the methods presented, the book discusses essential theories with clear guidelines on how to use them. Case studies and worked industry examples are included throughout to illustrate practical applications of topology design tools to achieve innovative structural solutions. The text is intended for professionals who are interested in using the tools provided, but does not require in-depth theoretical knowledge. It is ideal for researchers who want to expand the methods presented to new applications, and includes a companion website with related tools to assist in further study. - Provides design tools and methods for innovative structural design, focusing on the essential theory - Includes case studies and real-life examples to illustrate practical application, challenges, and solutions - Features accompanying software on a companion website to allow users to get up and running fast with the methods introduced - Includes input from an expert team who has collaborated over the past decade to develop the methods presented
Optimal Structural Design
Title | Optimal Structural Design PDF eBook |
Author | Ronald A. Gellatly |
Publisher | |
Pages | 84 |
Release | 1971 |
Genre | Numerical analysis |
ISBN |
The report considers the state of the art in methods of structural optimization. Mathematical programming based methods, while extremely successful with problems of moderate size tend to become prohibitively costly when applied to large scale structures. A novel approach to the weight optimization of indeterminate structures under multiple loading conditions with strength and displacement constraints has been developed and is presented herein. Using this method significant improvements in computational time have been achieved over direct numerical search methods. In some cases the numbers of iterations required to determine the least weight have been reduced by factors of over 20. The rate of convergence is independent of problem size permitting application to large scale structures. Examples of application of the new approach to a number of problems are included.
Recent Advances in Optimal Structural Design
Title | Recent Advances in Optimal Structural Design PDF eBook |
Author | Scott A. Burns |
Publisher | ASCE Publications |
Pages | 396 |
Release | 2002-01-01 |
Genre | Technology & Engineering |
ISBN | 9780784475249 |
Sponsored by the Technical Committee on Structural Design of the Technical Administrative Committee on Analysis and Computation of the Technical Activities Division of the Structural Engineering Institute of ASCE. This report documents the dramatic new developments in the field of structural optimization over the last two decades. Changes in both computational techniques and applications can be seen by developments in computational methods and solution algorithms, the role of optimization during the various stages of structural design, and the stochastic nature of design in relation to structural optimization. Topics include: Ømethods for discrete variable structural optimization; Ødecomposition methods in structural optimization; Østate of the art on the use of genetic algorithms in design of steel structures; Øconceptual design optimization of engineering structures; Øtopology and geometry optimization of trusses and frames; Øevolutionary structural optimization; Ødesign and optimization of semi-rigid framed structures; Øoptimized performance-based design for buildings; Ømulti-objective optimum design of seismic-resistant structures; and Øreliability- and cost-oriented optimal bridge maintenance planning. The book concludes with an extensive bibliography of journal papers on structural optimization published between 1987 and 1999.