Optimal Control with Aerospace Applications
Title | Optimal Control with Aerospace Applications PDF eBook |
Author | James M Longuski |
Publisher | Springer Science & Business Media |
Pages | 286 |
Release | 2013-11-04 |
Genre | Technology & Engineering |
ISBN | 1461489458 |
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!
Robust and Adaptive Control
Title | Robust and Adaptive Control PDF eBook |
Author | Eugene Lavretsky |
Publisher | Springer Science & Business Media |
Pages | 506 |
Release | 2012-11-13 |
Genre | Technology & Engineering |
ISBN | 1447143965 |
Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: · case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; · detailed background material for each chapter to motivate theoretical developments; · realistic examples and simulation data illustrating key features of the methods described; and · problem solutions for instructors and MATLAB® code provided electronically. The theoretical content and practical applications reported address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles that are drawn from the authors’ extensive professional experience with The Boeing Company. The systems covered are challenging, often open-loop unstable, with uncertainties in their dynamics, and thus requiring both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers are assumed to have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. Robust and Adaptive Control is intended to methodically teach senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value.
Optimal Control Theory with Aerospace Applications
Title | Optimal Control Theory with Aerospace Applications PDF eBook |
Author | Joseph Z. Ben-Asher |
Publisher | AIAA Education |
Pages | 0 |
Release | 2010 |
Genre | Technology & Engineering |
ISBN | 9781600867323 |
Optimal control theory is a mathematical optimization method with important applications in the aerospace industry. This graduate-level textbook is based on the author's two decades of teaching at Tel-Aviv University and the Technion Israel Institute of Technology, and builds upon the pioneering methodologies developed by H.J. Kelley. Unlike other books on the subject, the text places optimal control theory within a historical perspective. Following the historical introduction are five chapters dealing with theory and five dealing with primarily aerospace applications. The theoretical section follows the calculus of variations approach, while also covering topics such as gradient methods, adjoint analysis, hodograph perspectives, and singular control. Important examples such as Zermelo's navigation problem are addressed throughout the theoretical chapters of the book. The applications section contains case studies in areas such as atmospheric flight, rocket performance, and missile guidance. The cases chosen are those that demonstrate some new computational aspects, are historically important, or are connected to the legacy of H.J. Kelley.To keep the mathematical level at that of graduate students in engineering, rigorous proofs of many important results are not given, while the interested reader is referred to more mathematical sources. Problem sets are also included.
Optimal Control and Estimation
Title | Optimal Control and Estimation PDF eBook |
Author | Robert F. Stengel |
Publisher | Courier Corporation |
Pages | 674 |
Release | 2012-10-16 |
Genre | Mathematics |
ISBN | 0486134814 |
Graduate-level text provides introduction to optimal control theory for stochastic systems, emphasizing application of basic concepts to real problems. "Invaluable as a reference for those already familiar with the subject." — Automatica.
Optimal Control Theory for Applications
Title | Optimal Control Theory for Applications PDF eBook |
Author | David G. Hull |
Publisher | Springer Science & Business Media |
Pages | 402 |
Release | 2013-03-09 |
Genre | Technology & Engineering |
ISBN | 1475741804 |
The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.
Optimal Control
Title | Optimal Control PDF eBook |
Author | Frank L. Lewis |
Publisher | John Wiley & Sons |
Pages | 552 |
Release | 2012-02-01 |
Genre | Technology & Engineering |
ISBN | 0470633492 |
A NEW EDITION OF THE CLASSIC TEXT ON OPTIMAL CONTROL THEORY As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
Title | Practical Methods for Optimal Control and Estimation Using Nonlinear Programming PDF eBook |
Author | John T. Betts |
Publisher | SIAM |
Pages | 442 |
Release | 2010-01-01 |
Genre | Mathematics |
ISBN | 0898716888 |
A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.