Optimal Control of PDEs under Uncertainty

Optimal Control of PDEs under Uncertainty
Title Optimal Control of PDEs under Uncertainty PDF eBook
Author Jesús Martínez-Frutos
Publisher Springer
Pages 138
Release 2018-08-30
Genre Mathematics
ISBN 3319982109

Download Optimal Control of PDEs under Uncertainty Book in PDF, Epub and Kindle

This book provides a direct and comprehensive introduction to theoretical and numerical concepts in the emerging field of optimal control of partial differential equations (PDEs) under uncertainty. The main objective of the book is to offer graduate students and researchers a smooth transition from optimal control of deterministic PDEs to optimal control of random PDEs. Coverage includes uncertainty modelling in control problems, variational formulation of PDEs with random inputs, robust and risk-averse formulations of optimal control problems, existence theory and numerical resolution methods. The exposition focusses on the entire path, starting from uncertainty modelling and ending in the practical implementation of numerical schemes for the numerical approximation of the considered problems. To this end, a selected number of illustrative examples are analysed in detail throughout the book. Computer codes, written in MatLab, are provided for all these examples. This book is adressed to graduate students and researches in Engineering, Physics and Mathematics who are interested in optimal control and optimal design for random partial differential equations.

Optimal Control of Partial Differential Equations

Optimal Control of Partial Differential Equations
Title Optimal Control of Partial Differential Equations PDF eBook
Author Andrea Manzoni
Publisher Springer Nature
Pages 507
Release 2022-01-01
Genre Mathematics
ISBN 3030772268

Download Optimal Control of Partial Differential Equations Book in PDF, Epub and Kindle

This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a “hands-on” treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.

Optimization and Control for Partial Differential Equations

Optimization and Control for Partial Differential Equations
Title Optimization and Control for Partial Differential Equations PDF eBook
Author Roland Herzog
Publisher Walter de Gruyter GmbH & Co KG
Pages 474
Release 2022-03-07
Genre Mathematics
ISBN 3110695987

Download Optimization and Control for Partial Differential Equations Book in PDF, Epub and Kindle

This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.

Deterministic and Stochastic Optimal Control and Inverse Problems

Deterministic and Stochastic Optimal Control and Inverse Problems
Title Deterministic and Stochastic Optimal Control and Inverse Problems PDF eBook
Author Baasansuren Jadamba
Publisher CRC Press
Pages 394
Release 2021-12-15
Genre Computers
ISBN 1000511723

Download Deterministic and Stochastic Optimal Control and Inverse Problems Book in PDF, Epub and Kindle

Inverse problems of identifying parameters and initial/boundary conditions in deterministic and stochastic partial differential equations constitute a vibrant and emerging research area that has found numerous applications. A related problem of paramount importance is the optimal control problem for stochastic differential equations. This edited volume comprises invited contributions from world-renowned researchers in the subject of control and inverse problems. There are several contributions on optimal control and inverse problems covering different aspects of the theory, numerical methods, and applications. Besides a unified presentation of the most recent and relevant developments, this volume also presents some survey articles to make the material self-contained. To maintain the highest level of scientific quality, all manuscripts have been thoroughly reviewed.

Large-Scale PDE-Constrained Optimization

Large-Scale PDE-Constrained Optimization
Title Large-Scale PDE-Constrained Optimization PDF eBook
Author Lorenz T. Biegler
Publisher Springer Science & Business Media
Pages 347
Release 2012-12-06
Genre Mathematics
ISBN 364255508X

Download Large-Scale PDE-Constrained Optimization Book in PDF, Epub and Kindle

Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.

Constrained Optimization and Optimal Control for Partial Differential Equations

Constrained Optimization and Optimal Control for Partial Differential Equations
Title Constrained Optimization and Optimal Control for Partial Differential Equations PDF eBook
Author Günter Leugering
Publisher Springer Science & Business Media
Pages 622
Release 2012-01-03
Genre Mathematics
ISBN 3034801335

Download Constrained Optimization and Optimal Control for Partial Differential Equations Book in PDF, Epub and Kindle

This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

Mathematical Analysis in Interdisciplinary Research

Mathematical Analysis in Interdisciplinary Research
Title Mathematical Analysis in Interdisciplinary Research PDF eBook
Author Ioannis N. Parasidis
Publisher Springer Nature
Pages 1050
Release 2022-03-10
Genre Mathematics
ISBN 3030847217

Download Mathematical Analysis in Interdisciplinary Research Book in PDF, Epub and Kindle

This contributed volume provides an extensive account of research and expository papers in a broad domain of mathematical analysis and its various applications to a multitude of fields. Presenting the state-of-the-art knowledge in a wide range of topics, the book will be useful to graduate students and researchers in theoretical and applicable interdisciplinary research. The focus is on several subjects including: optimal control problems, optimal maintenance of communication networks, optimal emergency evacuation with uncertainty, cooperative and noncooperative partial differential systems, variational inequalities and general equilibrium models, anisotropic elasticity and harmonic functions, nonlinear stochastic differential equations, operator equations, max-product operators of Kantorovich type, perturbations of operators, integral operators, dynamical systems involving maximal monotone operators, the three-body problem, deceptive systems, hyperbolic equations, strongly generalized preinvex functions, Dirichlet characters, probability distribution functions, applied statistics, integral inequalities, generalized convexity, global hyperbolicity of spacetimes, Douglas-Rachford methods, fixed point problems, the general Rodrigues problem, Banach algebras, affine group, Gibbs semigroup, relator spaces, sparse data representation, Meier-Keeler sequential contractions, hybrid contractions, and polynomial equations. Some of the works published within this volume provide as well guidelines for further research and proposals for new directions and open problems.