Introduction to Optical Waveguide Analysis

Introduction to Optical Waveguide Analysis
Title Introduction to Optical Waveguide Analysis PDF eBook
Author Kenji Kawano
Publisher John Wiley & Sons
Pages 292
Release 2004-04-05
Genre Science
ISBN 0471465208

Download Introduction to Optical Waveguide Analysis Book in PDF, Epub and Kindle

A complete survey of modern design and analysis techniques for optical waveguides This volume thoroughly details modern and widely accepted methods for designing the optical waveguides used in telecommunications systems. It offers a straightforward presentation of the sophisticated techniques used in waveguide analysis and enables a quick grasp of modern numerical methods with easy mathematics. The book is intended to guide the reader to a comprehensive understanding of optical waveguide analysis through self-study. This comprehensive presentation includes: * An extensive and exhaustive list of mathematical manipulations * Detailed explanations of common design methods: finite element method (FEM), finite difference method (FDM), beam propagation method (BPM), and finite difference time-domain method (FD-TDM) * Explanations for numerical solutions of optical waveguide problems with sophisticated techniques used in modern computer-aided design (CAD) software * Solutions to Maxwell's equations and the Schrodinger equation The authors provide excellent self-study material for practitioners, researchers, and students, while also presenting detailed mathematical manipulations that can be easily understood by readers who are unfamiliar with them. Introduction to Optical Waveguide Analysis presents modern design methods in a comprehensive and easy-to-understand format.

Optical Waveguide Theory by the Finite Element Method

Optical Waveguide Theory by the Finite Element Method
Title Optical Waveguide Theory by the Finite Element Method PDF eBook
Author Masanori Koshiba
Publisher Springer
Pages 0
Release 2012-11-07
Genre Science
ISBN 9789401047135

Download Optical Waveguide Theory by the Finite Element Method Book in PDF, Epub and Kindle

Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides
Title Fundamentals of Optical Waveguides PDF eBook
Author Katsunari Okamoto
Publisher Elsevier
Pages 578
Release 2010-08-04
Genre Technology & Engineering
ISBN 0080455069

Download Fundamentals of Optical Waveguides Book in PDF, Epub and Kindle

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)

Finite Element Methods for Nonlinear Optical Waveguides

Finite Element Methods for Nonlinear Optical Waveguides
Title Finite Element Methods for Nonlinear Optical Waveguides PDF eBook
Author Xin-Hua Wang
Publisher Routledge
Pages 314
Release 2019-06-14
Genre Technology & Engineering
ISBN 1351448579

Download Finite Element Methods for Nonlinear Optical Waveguides Book in PDF, Epub and Kindle

This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.

Optical Waveguide Theory by the Finite Element Method

Optical Waveguide Theory by the Finite Element Method
Title Optical Waveguide Theory by the Finite Element Method PDF eBook
Author Masanori Koshiba
Publisher Springer
Pages 0
Release 2014-01-14
Genre Science
ISBN 9789401116343

Download Optical Waveguide Theory by the Finite Element Method Book in PDF, Epub and Kindle

Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics
Title The Finite Element Method in Electromagnetics PDF eBook
Author Jian-Ming Jin
Publisher John Wiley & Sons
Pages 728
Release 2015-02-18
Genre Science
ISBN 1118842022

Download The Finite Element Method in Electromagnetics Book in PDF, Epub and Kindle

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Finite Element Modeling Methods for Photonics

Finite Element Modeling Methods for Photonics
Title Finite Element Modeling Methods for Photonics PDF eBook
Author B. M. Azizur Rahman
Publisher Artech House
Pages 265
Release 2013-08-01
Genre Technology & Engineering
ISBN 1608075311

Download Finite Element Modeling Methods for Photonics Book in PDF, Epub and Kindle

The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astronomy, and sensing, to chemistry, imaging, and biomedical R&D. This book emphasizes practical, problem-solving applications and includes real-world examples to assist readers in understanding how mathematical concepts translate to computer code for finite element-based methods applicable to a range of photonic structures. In addition, this is the perfect support to anyone using the COMSOL Multiphysics© RF Module.