Operator Algebras and Quantum Statistical Mechanics 1
Title | Operator Algebras and Quantum Statistical Mechanics 1 PDF eBook |
Author | Ola Bratteli |
Publisher | Springer Science & Business Media |
Pages | 528 |
Release | 1987 |
Genre | Mathematics |
ISBN | 9783540170938 |
This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made. The second edition contains new and improved results. The principal changes include: A more comprehensive discussion of dissipative operators and analytic elements; the positive resolution of the question of whether maximal orthogonal probability measure on the state space of C-algebra were automatically maximal along all the probability measures on the space.
Operator Algebras and Quantum Statistical Mechanics
Title | Operator Algebras and Quantum Statistical Mechanics PDF eBook |
Author | Ola Bratteli |
Publisher | Springer Science & Business Media |
Pages | 544 |
Release | 1979 |
Genre | Mathematics |
ISBN |
For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major changes in the new edition relate to Bose-Einstein condensation, the dynamics of the X-Y model and questions on phase transitions.
Operator Algebras and Quantum Statistical Mechanics
Title | Operator Algebras and Quantum Statistical Mechanics PDF eBook |
Author | Ola Bratteli |
Publisher | Springer Science & Business Media |
Pages | 525 |
Release | 2013-06-29 |
Genre | Science |
ISBN | 3662034441 |
For almost two decades, this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. Major changes in the new edition relate to Bose-Einstein condensation, the dynamics of the X-Y model and questions on phase transitions.
C*-Algebras and W*-Algebras
Title | C*-Algebras and W*-Algebras PDF eBook |
Author | Shoichiro Sakai |
Publisher | Springer Science & Business Media |
Pages | 271 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642619932 |
From the reviews: "This book is an excellent and comprehensive survey of the theory of von Neumann algebras. It includes all the fundamental results of the subject, and is a valuable reference for both the beginner and the expert." Mathematical Reviews
Quantum Symmetries on Operator Algebras
Title | Quantum Symmetries on Operator Algebras PDF eBook |
Author | David Emrys Evans |
Publisher | |
Pages | 854 |
Release | 1998 |
Genre | Mathematics |
ISBN |
In the last 20 years, the study of operator algebras has developed from a branch of functional analysis to a central field of mathematics with applications and connections with different areas in both pure mathematics (foliations, index theory, K-theory, cyclic homology, affine Kac--Moody algebras, quantum groups, low dimensional topology) and mathematical physics (integrable theories, statistical mechanics, conformal field theories and the string theories of elementary particles). The theory of operator algebras was initiated by von Neumann and Murray as a tool for studying group representations and as a framework for quantum mechanics, and has since kept in touch with its roots in physics as a framework for quantum statistical mechanics and the formalism of algebraic quantum field theory. However, in 1981, the study of operator algebras took a new turn with the introduction by Vaughan Jones of subfactor theory and remarkable connections were found with knot theory, 3-manifolds, quantum groups and integrable systems in statistical mechanics and conformal field theory. The purpose of this book, one of the first in the area, is to look at these combinatorial-algebraic developments from the perspective of operator algebras; to bring the reader to the frontline of research with the minimum of prerequisites from classical theory.
Operator Algebras and Quantum Statistical Mechanics 1
Title | Operator Algebras and Quantum Statistical Mechanics 1 PDF eBook |
Author | Ola Bratteli |
Publisher | Springer Science & Business Media |
Pages | 510 |
Release | 2013-03-14 |
Genre | Technology & Engineering |
ISBN | 3662025205 |
In this book we describe the elementary theory of operator algebras and parts of the advanced theory which are of relevance, or potentially of relevance, to mathematical physics. Subsequently we describe various applications to quantum statistical mechanics. At the outset of this project we intended to cover this material in one volume but in the course of develop ment it was realized that this would entail the omission ofvarious interesting topics or details. Consequently the book was split into two volumes, the first devoted to the general theory of operator algebras and the second to the applications. This splitting into theory and applications is conventional but somewhat arbitrary. In the last 15-20 years mathematical physicists have realized the importance of operator algebras and their states and automorphisms for problems of field theory and statistical mechanics. But the theory of 20 years aga was largely developed for the analysis of group representations and it was inadequate for many physical applications. Thus after a short honey moon period in which the new found tools of the extant theory were applied to the most amenable problems a longer and more interesting period ensued in which mathematical physicists were forced to redevelop the theory in relevant directions. New concepts were introduced, e. g. asymptotic abelian ness and KMS states, new techniques applied, e. g. the Choquet theory of barycentric decomposition for states, and new structural results obtained, e. g. the existence of a continuum of nonisomorphic type-three factors.
Quantum Geometry
Title | Quantum Geometry PDF eBook |
Author | Jan Ambjørn |
Publisher | Cambridge University Press |
Pages | 377 |
Release | 1997-06-19 |
Genre | Science |
ISBN | 0521461677 |
Describes random geometry and applications to strings, quantum gravity, topological field theory and membrane physics.