Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension

Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension
Title Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension PDF eBook
Author Aidan Sims
Publisher Springer Nature
Pages 163
Release 2020-06-22
Genre Mathematics
ISBN 3030397130

Download Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension Book in PDF, Epub and Kindle

This book collects the notes of the lectures given at the Advanced Course on Crossed Products, Groupoids, and Rokhlin dimension, that took place at the Centre de Recerca Matemàtica (CRM) from March 13 to March 17, 2017. The notes consist of three series of lectures. The first one was given by Dana Williams (Dartmouth College), and served as an introduction to crossed products of C*-algebras and the study of their structure. The second series of lectures was delivered by Aidan Sims (Wollongong), who gave an overview of the theory of topological groupoids (as a model for groups and group actions) and groupoid C*-algebras, with particular emphasis on the case of étale groupoids. Finally, the last series was delivered by Gábor Szabó (Copenhagen), and consisted of an introduction to Rokhlin type properties (mostly centered around the work of Hirshberg, Winter and Zacharias) with hints to the more advanced theory related to groupoids.

Crossed Products of $C^*$-Algebras

Crossed Products of $C^*$-Algebras
Title Crossed Products of $C^*$-Algebras PDF eBook
Author Dana P. Williams
Publisher American Mathematical Soc.
Pages 546
Release 2007
Genre Mathematics
ISBN 0821842420

Download Crossed Products of $C^*$-Algebras Book in PDF, Epub and Kindle

The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.

A Groupoid Approach to C*-Algebras

A Groupoid Approach to C*-Algebras
Title A Groupoid Approach to C*-Algebras PDF eBook
Author Jean Renault
Publisher Springer
Pages 164
Release 2006-11-15
Genre Mathematics
ISBN 3540392181

Download A Groupoid Approach to C*-Algebras Book in PDF, Epub and Kindle

Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids

Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids
Title Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids PDF eBook
Author Ruy Exel
Publisher Springer Nature
Pages 161
Release 2022-10-18
Genre Mathematics
ISBN 3031055136

Download Characterizing Groupoid C*-algebras of Non-Hausdorff Étale Groupoids Book in PDF, Epub and Kindle

This book develops tools to handle C*-algebras arising as completions of convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. Kumjian, and later Renault, showed that Gelfand's result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian–Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian–Renault theory to a much broader class of C*-algebras. This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fields.

Ergodic Theory

Ergodic Theory
Title Ergodic Theory PDF eBook
Author Cesar E. Silva
Publisher Springer Nature
Pages 707
Release 2023-07-31
Genre Mathematics
ISBN 1071623885

Download Ergodic Theory Book in PDF, Epub and Kindle

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras

Ergodic Theory

Ergodic Theory
Title Ergodic Theory PDF eBook
Author David Kerr
Publisher Springer
Pages 455
Release 2017-02-09
Genre Mathematics
ISBN 3319498479

Download Ergodic Theory Book in PDF, Epub and Kindle

This book provides an introduction to the ergodic theory and topological dynamics of actions of countable groups. It is organized around the theme of probabilistic and combinatorial independence, and highlights the complementary roles of the asymptotic and the perturbative in its comprehensive treatment of the core concepts of weak mixing, compactness, entropy, and amenability. The more advanced material includes Popa's cocycle superrigidity, the Furstenberg-Zimmer structure theorem, and sofic entropy. The structure of the book is designed to be flexible enough to serve a variety of readers. The discussion of dynamics is developed from scratch assuming some rudimentary functional analysis, measure theory, and topology, and parts of the text can be used as an introductory course. Researchers in ergodic theory and related areas will also find the book valuable as a reference.

Cyclic Cohomology at 40: Achievements and Future Prospects

Cyclic Cohomology at 40: Achievements and Future Prospects
Title Cyclic Cohomology at 40: Achievements and Future Prospects PDF eBook
Author A. Connes
Publisher American Mathematical Society
Pages 592
Release 2023-02-23
Genre Mathematics
ISBN 1470469774

Download Cyclic Cohomology at 40: Achievements and Future Prospects Book in PDF, Epub and Kindle

This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27–October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada. Cyclic cohomology, since its discovery forty years ago in noncommutative differential geometry, has become a fundamental mathematical tool with applications in domains as diverse as analysis, algebraic K-theory, algebraic geometry, arithmetic geometry, solid state physics and quantum field theory. The reader will find survey articles providing a user-friendly introduction to applications of cyclic cohomology in such areas as higher categorical algebra, Hopf algebra symmetries, de Rham-Witt complex, quantum physics, etc., in which cyclic homology plays the role of a unifying theme. The researcher will find frontier research articles in which the cyclic theory provides a computational tool of great relevance. In particular, in analysis cyclic cohomology index formulas capture the higher invariants of manifolds, where the group symmetries are extended to Hopf algebra actions, and where Lie algebra cohomology is greatly extended to the cyclic cohomology of Hopf algebras which becomes the natural receptacle for characteristic classes. In algebraic topology the cyclotomic structure obtained using the cyclic subgroups of the circle action on topological Hochschild homology gives rise to remarkably significant arithmetic structures intimately related to crystalline cohomology through the de Rham-Witt complex, Fontaine's theory and the Fargues-Fontaine curve.