Open-Space Microfluidics

Open-Space Microfluidics
Title Open-Space Microfluidics PDF eBook
Author Emmanuel Delamarche
Publisher John Wiley & Sons
Pages 440
Release 2018-04-30
Genre Technology & Engineering
ISBN 3527340386

Download Open-Space Microfluidics Book in PDF, Epub and Kindle

Summarizing the latest trends and the current state of this research field, this up-to-date book discusses in detail techniques to perform localized alterations on surfaces with great flexibility, including microfluidic probes, multifunctional nanopipettes and various surface patterning techniques, such as dip pen nanolithography. These techniques are also put in perspective in terms of applications and how they can be transformative of numerous (bio)chemical processes involving surfaces. The editors are from IBM Zurich, the pioneers and pacesetters in the field at the forefront of research in this new and rapidly expanding area.

Open Microfluidics

Open Microfluidics
Title Open Microfluidics PDF eBook
Author Jean Berthier
Publisher John Wiley & Sons
Pages 384
Release 2016-07-20
Genre Science
ISBN 1118720822

Download Open Microfluidics Book in PDF, Epub and Kindle

Open microfluidics or open-surface is becoming fundamental in scientific domains such as biotechnology, biology and space. First, such systems and devices based on open microfluidics make use of capillary forces to move fluids, without any need for external energy. Second, the "openness" of the flow facilitates the accessibility to the liquid in biotechnology and biology, and reduces the weight in space applications. This book has been conceived to give the reader the fundamental basis of open microfluidics. It covers successively The theory of spontaneous capillary flow, with the general conditions for spontaneous capillary flow, and the dynamic aspects of such flows. The formation of capillary filaments which are associated to small contact angles and sharp grooves. The study of capillary flow in open rectangular, pseudo-rectangular and trapezoidal open microchannels. The dynamics of open capillary flows in grooves with a focus on capillary resistors. The case of very viscous liquids is analyzed. An analysis of suspended capillary flows: such flows move in suspended channels devoid of top cover and bottom plate. Their accessibility is reinforced, and such systems are becoming fundamental in biology. An analysis of “rails” microfluidics, which are flows that move in channels devoid of side walls. This geometry has the advantage to be compatible with capillary networks, which are now of great interest in biotechnology, for molecular detection for example. Paper-based microfluidics where liquids wick flat paper matrix. Applications concern bioassays such as point of care devices (POC). Thread-based microfluidics is a new domain of investigation. It is seeing presently many new developments in the domain of separation and filtration, and opens the way to smart bandages and tissue engineering. The book is intended to cover the theoretical aspects of open microfluidics, experimental approaches, and examples of application.

Open-Channel Microfluidics

Open-Channel Microfluidics
Title Open-Channel Microfluidics PDF eBook
Author Jean Berthier
Publisher Morgan & Claypool Publishers
Pages 171
Release 2019-09-04
Genre Technology & Engineering
ISBN 1643276646

Download Open-Channel Microfluidics Book in PDF, Epub and Kindle

Open microfluidics, the study of microflows having a boundary with surrounding air, encompasses different aspects such as paper or thread-based microfluidics, droplet microfluidics and open-channel microfluidics. Open-channel microflow is a flow at the micro-scale, guided by solid structures, and having at least a free boundary (with air or vapor) other than the advancing meniscus. This book is devoted to the study of open-channel microfluidics which (contrary to paper or thread or droplet microfluidics) is still very sparsely documented, but bears many new applications in biology, biotechnology, medicine, material and space sciences. Capillarity being the principal force triggering an open microflow, the principles of capillarity are first recalled. The onset of open-channel microflow is next analyzed and the fundamental notion of generalized Cassie angle (the apparent contact angle which accounts for the presence of air) is presented. The theory of the dynamics of open-channel microflows is then developed, using the notion of averaged friction length which accounts for the presence of air along the boundaries of the flow domain. Different channel morphologies are studied and geometrical features such as valves and capillary pumps are examined. An introduction to two-phase open-channel microflows is also presented showing that immiscible plugs can be transported by an open-channel flow. Finally, a selection of interesting applications in the domains of space, materials, medicine and biology is presented, showing the potentialities of open-channel microfluidics.

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip
Title Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip PDF eBook
Author Xiujun (James) Li
Publisher Newnes
Pages 486
Release 2021-09-19
Genre Science
ISBN 0444594612

Download Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip Book in PDF, Epub and Kindle

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring. Provides calculations, solved problems, data tables and design rules to help understand microfluidic basic theory and principles Gives an applied understanding of the principles behind the design, manufacture, and testing of microfluidic systems Emphasizes on quickly developing and emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology

Microfluidics

Microfluidics
Title Microfluidics PDF eBook
Author Fouad Sabry
Publisher One Billion Knowledgeable
Pages 477
Release 2022-01-16
Genre Technology & Engineering
ISBN

Download Microfluidics Book in PDF, Epub and Kindle

What Is Microfluidics Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale at which surface forces dominate volumetric forces. It is a multidisciplinary field that involves engineering, physics, chemistry, biochemistry, nanotechnology, and biotechnology. It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening. Microfluidics emerged in the beginning of the 1980s and is used in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Microfluidics Chapter 2: Droplet-based microfluidics Chapter 3: Digital microfluidics Chapter 4: Paper-based microfluidics Chapter 5: Microfluidic cell culture Chapter 6: Electroosmotic pump Chapter 7: Materials science (II) Answering the public top questions about microfluidics. (III) Real world examples for the usage of microfluidics in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of microfluidics' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of microfluidics.

Microfluidics for Cellular Applications

Microfluidics for Cellular Applications
Title Microfluidics for Cellular Applications PDF eBook
Author Gerardo Perozziello
Publisher Elsevier
Pages 433
Release 2023-04-13
Genre Technology & Engineering
ISBN 0128224975

Download Microfluidics for Cellular Applications Book in PDF, Epub and Kindle

Microfluidics for Cellular Applications describes microfluidic devices for cell screening from a physical, technological and applications point-of-view, presenting a comparison with the cell microenvironment and conventional instruments used in medicine. Microfluidic technologies, protocols, devices for cell screening and treatment have reached an advanced state but are mainly used in research. Sections break them down into practical applications and conventional medical procedures and offers insights and analysis on how higher resolutions and fast operations can be reached. This is an important resource for those from an engineering and technology background who want to understand more and gain additional insights on cell screening processes. Outlines the major applications of microfluidic devices in medicine and biotechnology Assesses the major challenges of using microfluidic devices in terms of complexity of the control set-up, ease of use, integration capability, automation level, analysis throughput, content and costs Describes the major fabrication techniques for assembling effective microfluidic devices for bioapplications

Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems

Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems
Title Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems PDF eBook
Author Sabu Thomas
Publisher Elsevier
Pages 440
Release 2021-10-12
Genre Technology & Engineering
ISBN 0128237287

Download Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems Book in PDF, Epub and Kindle

Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents. Outlines how miniaturization techniques can be used to create new optical and electronic micro- and nanodevices Explores major application areas, including biomedicine, environmental science and security Assesses the major challenges of using miniaturization techniques