Open Problems in Optimization and Data Analysis
Title | Open Problems in Optimization and Data Analysis PDF eBook |
Author | Panos M. Pardalos |
Publisher | Springer |
Pages | 341 |
Release | 2018-12-04 |
Genre | Mathematics |
ISBN | 3319991426 |
Computational and theoretical open problems in optimization, computational geometry, data science, logistics, statistics, supply chain modeling, and data analysis are examined in this book. Each contribution provides the fundamentals needed to fully comprehend the impact of individual problems. Current theoretical, algorithmic, and practical methods used to circumvent each problem are provided to stimulate a new effort towards innovative and efficient solutions. Aimed towards graduate students and researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, this book provides a broad comprehensive approach to understanding the significance of specific challenging or open problems within each discipline. The contributions contained in this book are based on lectures focused on “Challenges and Open Problems in Optimization and Data Science” presented at the Deucalion Summer Institute for Advanced Studies in Optimization, Mathematics, and Data Science in August 2016.
Optimization for Data Analysis
Title | Optimization for Data Analysis PDF eBook |
Author | Stephen J. Wright |
Publisher | Cambridge University Press |
Pages | 239 |
Release | 2022-04-21 |
Genre | Computers |
ISBN | 1316518981 |
A concise text that presents and analyzes the fundamental techniques and methods in optimization that are useful in data science.
Mathematical Problems in Data Science
Title | Mathematical Problems in Data Science PDF eBook |
Author | Li M. Chen |
Publisher | Springer |
Pages | 219 |
Release | 2015-12-15 |
Genre | Computers |
ISBN | 3319251279 |
This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods. For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark. This book contains three parts. The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec overy, geometric search, and computing models. Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks. Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful.
Foundations of Data Science
Title | Foundations of Data Science PDF eBook |
Author | Avrim Blum |
Publisher | Cambridge University Press |
Pages | 433 |
Release | 2020-01-23 |
Genre | Computers |
ISBN | 1108617360 |
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Optimization and Its Applications in Control and Data Sciences
Title | Optimization and Its Applications in Control and Data Sciences PDF eBook |
Author | Boris Goldengorin |
Publisher | Springer |
Pages | 516 |
Release | 2016-09-29 |
Genre | Mathematics |
ISBN | 3319420569 |
This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference “Optimization and Its Applications in Control and Data Science” dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015. This book reflects developments in theory and applications rooted by Professor Polyak’s fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable.
Optimization Problems in Graph Theory
Title | Optimization Problems in Graph Theory PDF eBook |
Author | Boris Goldengorin |
Publisher | Springer |
Pages | 341 |
Release | 2018-09-27 |
Genre | Mathematics |
ISBN | 331994830X |
This book presents open optimization problems in graph theory and networks. Each chapter reflects developments in theory and applications based on Gregory Gutin’s fundamental contributions to advanced methods and techniques in combinatorial optimization. Researchers, students, and engineers in computer science, big data, applied mathematics, operations research, algorithm design, artificial intelligence, software engineering, data analysis, industrial and systems engineering will benefit from the state-of-the-art results presented in modern graph theory and its applications to the design of efficient algorithms for optimization problems. Topics covered in this work include: · Algorithmic aspects of problems with disjoint cycles in graphs · Graphs where maximal cliques and stable sets intersect · The maximum independent set problem with special classes · A general technique for heuristic algorithms for optimization problems · The network design problem with cut constraints · Algorithms for computing the frustration index of a signed graph · A heuristic approach for studying the patrol problem on a graph · Minimum possible sum and product of the proper connection number · Structural and algorithmic results on branchings in digraphs · Improved upper bounds for Korkel--Ghosh benchmark SPLP instances
Algorithm Portfolios
Title | Algorithm Portfolios PDF eBook |
Author | Dimitris Souravlias |
Publisher | Springer Nature |
Pages | 92 |
Release | 2021-03-24 |
Genre | Business & Economics |
ISBN | 3030685144 |
This book covers algorithm portfolios, multi-method schemes that harness optimization algorithms into a joint framework to solve optimization problems. It is expected to be a primary reference point for researchers and doctoral students in relevant domains that seek a quick exposure to the field. The presentation focuses primarily on the applicability of the methods and the non-expert reader will find this book useful for starting designing and implementing algorithm portfolios. The book familiarizes the reader with algorithm portfolios through current advances, applications, and open problems. Fundamental issues in building effective and efficient algorithm portfolios such as selection of constituent algorithms, allocation of computational resources, interaction between algorithms and parallelism vs. sequential implementations are discussed. Several new applications are analyzed and insights on the underlying algorithmic designs are provided. Future directions, new challenges, and open problems in the design of algorithm portfolios and applications are explored to further motivate research in this field.