Lectures on the Energy Critical Nonlinear Wave Equation

Lectures on the Energy Critical Nonlinear Wave Equation
Title Lectures on the Energy Critical Nonlinear Wave Equation PDF eBook
Author Carlos E. Kenig
Publisher American Mathematical Soc.
Pages 177
Release 2015-04-14
Genre Mathematics
ISBN 1470420147

Download Lectures on the Energy Critical Nonlinear Wave Equation Book in PDF, Epub and Kindle

This monograph deals with recent advances in the study of the long-time asymptotics of large solutions to critical nonlinear dispersive equations. The first part of the monograph describes, in the context of the energy critical wave equation, the "concentration-compactness/rigidity theorem method" introduced by C. Kenig and F. Merle. This approach has become the canonical method for the study of the "global regularity and well-posedness" conjecture (defocusing case) and the "ground-state" conjecture (focusing case) in critical dispersive problems. The second part of the monograph describes the "channel of energy" method, introduced by T. Duyckaerts, C. Kenig, and F. Merle, to study soliton resolution for nonlinear wave equations. This culminates in a presentation of the proof of the soliton resolution conjecture, for the three-dimensional radial focusing energy critical wave equation. It is the intent that the results described in this book will be a model for what to strive for in the study of other nonlinear dispersive equations. A co-publication of the AMS and CBMS.

Classical and Multilinear Harmonic Analysis

Classical and Multilinear Harmonic Analysis
Title Classical and Multilinear Harmonic Analysis PDF eBook
Author Camil Muscalu
Publisher Cambridge University Press
Pages 341
Release 2013-01-31
Genre Mathematics
ISBN 1107031826

Download Classical and Multilinear Harmonic Analysis Book in PDF, Epub and Kindle

This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)
Title Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) PDF eBook
Author Boyan Sirakov
Publisher World Scientific
Pages 5393
Release 2019-02-27
Genre Mathematics
ISBN 9813272899

Download Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) Book in PDF, Epub and Kindle

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations
Title Nonlinear Dispersive Equations PDF eBook
Author Terence Tao
Publisher American Mathematical Soc.
Pages 394
Release 2006
Genre Mathematics
ISBN 0821841432

Download Nonlinear Dispersive Equations Book in PDF, Epub and Kindle

"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".

Advances in Analysis

Advances in Analysis
Title Advances in Analysis PDF eBook
Author Charles Fefferman
Publisher Princeton University Press
Pages 478
Release 2014-01-05
Genre Mathematics
ISBN 0691159416

Download Advances in Analysis Book in PDF, Epub and Kindle

Princeton University's Elias Stein was the first mathematician to see the profound interconnections that tie classical Fourier analysis to several complex variables and representation theory. His fundamental contributions include the Kunze-Stein phenomenon, the construction of new representations, the Stein interpolation theorem, the idea of a restriction theorem for the Fourier transform, and the theory of Hp Spaces in several variables. Through his great discoveries, through books that have set the highest standard for mathematical exposition, and through his influence on his many collaborators and students, Stein has changed mathematics. Drawing inspiration from Stein’s contributions to harmonic analysis and related topics, this volume gathers papers from internationally renowned mathematicians, many of whom have been Stein’s students. The book also includes expository papers on Stein’s work and its influence. The contributors are Jean Bourgain, Luis Caffarelli, Michael Christ, Guy David, Charles Fefferman, Alexandru D. Ionescu, David Jerison, Carlos Kenig, Sergiu Klainerman, Loredana Lanzani, Sanghyuk Lee, Lionel Levine, Akos Magyar, Detlef Müller, Camil Muscalu, Alexander Nagel, D. H. Phong, Malabika Pramanik, Andrew S. Raich, Fulvio Ricci, Keith M. Rogers, Andreas Seeger, Scott Sheffield, Luis Silvestre, Christopher D. Sogge, Jacob Sturm, Terence Tao, Christoph Thiele, Stephen Wainger, and Steven Zelditch.

Nonlinear Waves

Nonlinear Waves
Title Nonlinear Waves PDF eBook
Author Lokenath Debnath
Publisher CUP Archive
Pages 376
Release 1983-12-30
Genre Mathematics
ISBN 9780521254687

Download Nonlinear Waves Book in PDF, Epub and Kindle

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.

Mirror Symmetry

Mirror Symmetry
Title Mirror Symmetry PDF eBook
Author Kentaro Hori
Publisher American Mathematical Soc.
Pages 954
Release 2003
Genre Mathematics
ISBN 0821829556

Download Mirror Symmetry Book in PDF, Epub and Kindle

This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.