Functional Calculus of Pseudo-Differential Boundary Problems
Title | Functional Calculus of Pseudo-Differential Boundary Problems PDF eBook |
Author | G. Grubb |
Publisher | Springer Science & Business Media |
Pages | 520 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 1475718985 |
CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Calculus of Pseudodifferential Boundary Problems
Title | Functional Calculus of Pseudodifferential Boundary Problems PDF eBook |
Author | Gerd Grubb |
Publisher | Springer Science & Business Media |
Pages | 536 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 146120769X |
Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book’s improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.
Functional Calculus of Pseudo-Differential Boundary Problems
Title | Functional Calculus of Pseudo-Differential Boundary Problems PDF eBook |
Author | G. Grubb |
Publisher | Birkhäuser |
Pages | 0 |
Release | 1986-01-01 |
Genre | Science |
ISBN | 9780817633493 |
CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On the Functional Calculus of Pseudo-differential Boundary Problems
Title | On the Functional Calculus of Pseudo-differential Boundary Problems PDF eBook |
Author | G. Grubb |
Publisher | |
Pages | 12 |
Release | 1983 |
Genre | |
ISBN |
Functional Calculus of Pseudodifferential Boundary Problems
Title | Functional Calculus of Pseudodifferential Boundary Problems PDF eBook |
Author | Gerd Grubb |
Publisher | |
Pages | 540 |
Release | 1996-01-26 |
Genre | |
ISBN | 9781461207702 |
Functional Analytic Methods for Heat Green Operators
Title | Functional Analytic Methods for Heat Green Operators PDF eBook |
Author | Kazuaki Taira |
Publisher | Springer Nature |
Pages | 634 |
Release | |
Genre | |
ISBN | 3031666127 |
Pseudo-Differential Operators: Groups, Geometry and Applications
Title | Pseudo-Differential Operators: Groups, Geometry and Applications PDF eBook |
Author | M. W. Wong |
Publisher | Birkhäuser |
Pages | 242 |
Release | 2017-01-20 |
Genre | Mathematics |
ISBN | 3319475126 |
This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.