On the Edge of Magnetic Fusion Devices

On the Edge of Magnetic Fusion Devices
Title On the Edge of Magnetic Fusion Devices PDF eBook
Author Sergei Krasheninnikov
Publisher Springer Nature
Pages 269
Release 2020-09-07
Genre Science
ISBN 3030495949

Download On the Edge of Magnetic Fusion Devices Book in PDF, Epub and Kindle

This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices
Title The Plasma Boundary of Magnetic Fusion Devices PDF eBook
Author P.C Stangeby
Publisher CRC Press
Pages 738
Release 2000-01-01
Genre Science
ISBN 9780750305594

Download The Plasma Boundary of Magnetic Fusion Devices Book in PDF, Epub and Kindle

The Plasma Boundary of Magnetic Fusion Devices introduces the physics of the plasma boundary region, including plasma-surface interactions, with an emphasis on those occurring in magnetically confined fusion plasmas. The book covers plasma-surface interaction, Debye sheaths, sputtering, scrape-off layers, plasma impurities, recycling and control, 1D and 2D fluid and kinetic modeling of particle transport, plasma properties at the edge, diverter and limiter physics, and control of the plasma boundary. Divided into three parts, the book begins with Part 1, an introduction to the plasma boundary. The derivations are heuristic and worked problems help crystallize physical intuition, which is emphasized throughout. Part 2 provides an introduction to methods of modeling the plasma edge region and for interpreting computer code results. Part 3 presents a collection of essays on currently active research hot topics. With an extensive bibliography and index, this book is an invaluable first port-of-call for researchers interested in plasma-surface interactions.

Understanding of Edge Plasmas in Magnetic Fusion Energy Devices

Understanding of Edge Plasmas in Magnetic Fusion Energy Devices
Title Understanding of Edge Plasmas in Magnetic Fusion Energy Devices PDF eBook
Author
Publisher
Pages 16
Release 2004
Genre
ISBN

Download Understanding of Edge Plasmas in Magnetic Fusion Energy Devices Book in PDF, Epub and Kindle

A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.

Magnetic Fusion Technology

Magnetic Fusion Technology
Title Magnetic Fusion Technology PDF eBook
Author Thomas J. Dolan
Publisher Springer Science & Business Media
Pages 816
Release 2014-02-10
Genre Technology & Engineering
ISBN 1447155564

Download Magnetic Fusion Technology Book in PDF, Epub and Kindle

Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Magnetic Fusion Energy

Magnetic Fusion Energy
Title Magnetic Fusion Energy PDF eBook
Author George Neilson
Publisher Woodhead Publishing
Pages 634
Release 2016-06-02
Genre Science
ISBN 0081003269

Download Magnetic Fusion Energy Book in PDF, Epub and Kindle

Magnetic Fusion Energy: From Experiments to Power Plants is a timely exploration of the field, giving readers an understanding of the experiments that brought us to the threshold of the ITER era, as well as the physics and technology research needed to take us beyond ITER to commercial fusion power plants. With the start of ITER construction, the world’s magnetic fusion energy (MFE) enterprise has begun a new era. The ITER scientific and technical (S&T) basis is the result of research on many fusion plasma physics experiments over a period of decades. Besides ITER, the scope of fusion research must be broadened to create the S&T basis for practical fusion power plants, systems that will continuously convert the energy released from a burning plasma to usable electricity, operating for years with only occasional interruptions for scheduled maintenance. Provides researchers in academia and industry with an authoritative overview of the significant fusion energy experiments Considers the pathway towards future development of magnetic fusion energy power plants Contains experts contributions from editors and others who are well known in the field

Pressure Measurements in Magnetic Fusion Devices

Pressure Measurements in Magnetic Fusion Devices
Title Pressure Measurements in Magnetic Fusion Devices PDF eBook
Author H. F. Dylla
Publisher
Pages 34
Release 1981
Genre
ISBN

Download Pressure Measurements in Magnetic Fusion Devices Book in PDF, Epub and Kindle

Physics of Plasma-Wall Interactions in Controlled Fusion

Physics of Plasma-Wall Interactions in Controlled Fusion
Title Physics of Plasma-Wall Interactions in Controlled Fusion PDF eBook
Author D. E. Post
Publisher Springer Science & Business Media
Pages 1178
Release 2013-11-21
Genre Science
ISBN 1475700679

Download Physics of Plasma-Wall Interactions in Controlled Fusion Book in PDF, Epub and Kindle

Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro mising scheme to confine such a plasma is the use of i~tense mag netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall atoms are released and can enter the plasma. These wall atoms or impurities can deteriorate the plasma performance due to enhanced energy losses through radiation and an increase of the required magnetic pressure or a dilution of the fuel in the plasma. Finally, the impact of the plasma and energy on the wall can modify and deteriorate the thermal and mechanical pro perties of the vessel walls.