Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations
Title Numerical Solution of Stochastic Differential Equations PDF eBook
Author Peter E. Kloeden
Publisher Springer Science & Business Media
Pages 666
Release 2013-04-17
Genre Mathematics
ISBN 3662126168

Download Numerical Solution of Stochastic Differential Equations Book in PDF, Epub and Kindle

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations
Title Numerical Solution of Stochastic Differential Equations PDF eBook
Author Peter E. Kloeden
Publisher Springer Science & Business Media
Pages 680
Release 2011-06-15
Genre Mathematics
ISBN 9783540540625

Download Numerical Solution of Stochastic Differential Equations Book in PDF, Epub and Kindle

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Numerical Solution of SDE Through Computer Experiments

Numerical Solution of SDE Through Computer Experiments
Title Numerical Solution of SDE Through Computer Experiments PDF eBook
Author Peter Eris Kloeden
Publisher Springer Science & Business Media
Pages 304
Release 2012-12-06
Genre Mathematics
ISBN 3642579132

Download Numerical Solution of SDE Through Computer Experiments Book in PDF, Epub and Kindle

This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Numerical Solution of Stochastic Differential Equations with Jumps in Finance
Title Numerical Solution of Stochastic Differential Equations with Jumps in Finance PDF eBook
Author Eckhard Platen
Publisher Springer Science & Business Media
Pages 868
Release 2010-07-23
Genre Mathematics
ISBN 364213694X

Download Numerical Solution of Stochastic Differential Equations with Jumps in Finance Book in PDF, Epub and Kindle

In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations
Title Applied Stochastic Differential Equations PDF eBook
Author Simo Särkkä
Publisher Cambridge University Press
Pages 327
Release 2019-05-02
Genre Business & Economics
ISBN 1316510085

Download Applied Stochastic Differential Equations Book in PDF, Epub and Kindle

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations

Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations
Title Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations PDF eBook
Author Sergej S. Artemiev
Publisher VSP
Pages 188
Release 1997
Genre Mathematics
ISBN 9789067642507

Download Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations Book in PDF, Epub and Kindle

This book deals with numerical analysis of systems of both ordinary and stochastic differential equations. The first chapter is devoted to numerical solution problems of the Cauchy problem for stiff ordinary differential equation (ODE) systems by Rosenbrock-type methods (RTMs). Here, general solutions of consistency equations are obtained, which lead to the construction of RTMs from the first to the fourth order. The second chapter deals with statistical simulation problems of the solution of the Cauchy problem for stochastic differential equation (SDE) systems. The mean-square convergence theorem is considered, as well as Taylor expansions of numerical solutions. Also included are applications of numerical methods of SDE solutions to partial differential equations and to analysis and synthesis problems of automated control of stochastic systems.

Numerical Methods for Stochastic Partial Differential Equations with White Noise

Numerical Methods for Stochastic Partial Differential Equations with White Noise
Title Numerical Methods for Stochastic Partial Differential Equations with White Noise PDF eBook
Author Zhongqiang Zhang
Publisher Springer
Pages 391
Release 2017-09-01
Genre Mathematics
ISBN 3319575112

Download Numerical Methods for Stochastic Partial Differential Equations with White Noise Book in PDF, Epub and Kindle

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.