Numerical Methods of Statistics

Numerical Methods of Statistics
Title Numerical Methods of Statistics PDF eBook
Author John F. Monahan
Publisher Cambridge University Press
Pages 465
Release 2011-04-18
Genre Computers
ISBN 1139498002

Download Numerical Methods of Statistics Book in PDF, Epub and Kindle

This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians
Title Numerical Analysis for Statisticians PDF eBook
Author Kenneth Lange
Publisher Springer Science & Business Media
Pages 606
Release 2010-05-17
Genre Business & Economics
ISBN 1441959459

Download Numerical Analysis for Statisticians Book in PDF, Epub and Kindle

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.

A Handbook of Numerical and Statistical Techniques

A Handbook of Numerical and Statistical Techniques
Title A Handbook of Numerical and Statistical Techniques PDF eBook
Author J. H. Pollard
Publisher CUP Archive
Pages 372
Release 1977
Genre Mathematics
ISBN 9780521297509

Download A Handbook of Numerical and Statistical Techniques Book in PDF, Epub and Kindle

This handbook is designed for experimental scientists, particularly those in the life sciences. It is for the non-specialist, and although it assumes only a little knowledge of statistics and mathematics, those with a deeper understanding will also find it useful. The book is directed at the scientist who wishes to solve his numerical and statistical problems on a programmable calculator, mini-computer or interactive terminal. The volume is also useful for the user of full-scale computer systems in that it describes how the large computer solves numerical and statistical problems. The book is divided into three parts. Part I deals with numerical techniques and Part II with statistical techniques. Part III is devoted to the method of least squares which can be regarded as both a statistical and numerical method. The handbook shows clearly how each calculation is performed. Each technique is illustrated by at least one example and there are worked examples and exercises throughout the volume.

Numerical Issues in Statistical Computing for the Social Scientist

Numerical Issues in Statistical Computing for the Social Scientist
Title Numerical Issues in Statistical Computing for the Social Scientist PDF eBook
Author Micah Altman
Publisher John Wiley & Sons
Pages 349
Release 2004-02-15
Genre Mathematics
ISBN 0471475742

Download Numerical Issues in Statistical Computing for the Social Scientist Book in PDF, Epub and Kindle

At last—a social scientist's guide through the pitfalls of modern statistical computing Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing. Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field. Highlights include: A focus on problems occurring in maximum likelihood estimation Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB®) A guide to choosing accurate statistical packages Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis Emphasis on specific numerical problems, statistical procedures, and their applications in the field Replications and re-analysis of published social science research, using innovative numerical methods Key numerical estimation issues along with the means of avoiding common pitfalls A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.

Numerical Methods of Statistics

Numerical Methods of Statistics
Title Numerical Methods of Statistics PDF eBook
Author John F. Monahan
Publisher Cambridge University Press
Pages 446
Release 2001-02-05
Genre Computers
ISBN 9780521791687

Download Numerical Methods of Statistics Book in PDF, Epub and Kindle

This 2001 book provides a basic background in numerical analysis and its applications in statistics.

Numerical Methods for Nonlinear Estimating Equations

Numerical Methods for Nonlinear Estimating Equations
Title Numerical Methods for Nonlinear Estimating Equations PDF eBook
Author Christopher G. Small
Publisher Oxford University Press
Pages 330
Release 2003
Genre Mathematics
ISBN 9780198506881

Download Numerical Methods for Nonlinear Estimating Equations Book in PDF, Epub and Kindle

Non linearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihood's for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which when started at points of nonconcavity often have very poor convergence properties, and for additional flexibility proposes a number of modification to the standard methods for solving these algorithms. The book also extends beyond simple root search algorithms to include a discussion of the testing of roots for consistency, and the modification of available estimating functions to provide greater stability in inference. A variety of examples from practical applications are included to illustrate the problems and possibilities thus making this text ideal for the research statistician and graduate student.

Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R
Title Computational Methods for Numerical Analysis with R PDF eBook
Author James P Howard, II
Publisher CRC Press
Pages 257
Release 2017-07-12
Genre Mathematics
ISBN 1498723640

Download Computational Methods for Numerical Analysis with R Book in PDF, Epub and Kindle

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.