Numerical Methods for Stochastic Control Problems in Continuous Time
Title | Numerical Methods for Stochastic Control Problems in Continuous Time PDF eBook |
Author | Harold Kushner |
Publisher | Springer Science & Business Media |
Pages | 480 |
Release | 2013-11-27 |
Genre | Mathematics |
ISBN | 146130007X |
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.
Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE
Title | Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE PDF eBook |
Author | Nizar Touzi |
Publisher | Springer Science & Business Media |
Pages | 219 |
Release | 2012-09-25 |
Genre | Mathematics |
ISBN | 1461442869 |
This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.
Numerical Methods for Stochastic Computations
Title | Numerical Methods for Stochastic Computations PDF eBook |
Author | Dongbin Xiu |
Publisher | Princeton University Press |
Pages | 142 |
Release | 2010-07-01 |
Genre | Mathematics |
ISBN | 1400835348 |
The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples
Deterministic and Stochastic Optimal Control
Title | Deterministic and Stochastic Optimal Control PDF eBook |
Author | Wendell H. Fleming |
Publisher | Springer Science & Business Media |
Pages | 231 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461263808 |
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
Numerical Solution of Stochastic Differential Equations
Title | Numerical Solution of Stochastic Differential Equations PDF eBook |
Author | Peter E. Kloeden |
Publisher | Springer Science & Business Media |
Pages | 666 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 3662126168 |
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications
Title | Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications PDF eBook |
Author | Rene Carmona |
Publisher | SIAM |
Pages | 263 |
Release | 2016-02-18 |
Genre | Mathematics |
ISBN | 1611974240 |
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.
Controlled Markov Processes and Viscosity Solutions
Title | Controlled Markov Processes and Viscosity Solutions PDF eBook |
Author | Wendell H. Fleming |
Publisher | Springer Science & Business Media |
Pages | 436 |
Release | 2006-02-04 |
Genre | Mathematics |
ISBN | 0387310711 |
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.