Numerical Methods for Problems in Infinite Domains

Numerical Methods for Problems in Infinite Domains
Title Numerical Methods for Problems in Infinite Domains PDF eBook
Author D. Givoli
Publisher Elsevier
Pages 316
Release 2013-10-22
Genre Mathematics
ISBN 1483291081

Download Numerical Methods for Problems in Infinite Domains Book in PDF, Epub and Kindle

This volume reviews and discusses the main numerical methods used today for solving problems in infinite domains. It also presents in detail one very effective method in this class, namely the Dirichlet-to-Neumann (DtN) finite element method. The book is intended to provide the researcher or engineer with the state-of-the-art in numerical solution methods for infinite domain problems, such as the problems encountered in acoustics and structural acoustics, fluid dynamics, meteorology, and many other fields of application. The emphasis is on the fundamentals of the various methods, and on reporting recent progress and forecasting future directions. An appendix at the end of the book provides an introduction to the essentials of the finite element method, and suggests a short list of texts on the subject which are categorized by their level of mathematics.

Numerical Methods for Exterior Problems

Numerical Methods for Exterior Problems
Title Numerical Methods for Exterior Problems PDF eBook
Author Long'an Ying
Publisher World Scientific
Pages 282
Release 2006
Genre Mathematics
ISBN 9812772561

Download Numerical Methods for Exterior Problems Book in PDF, Epub and Kindle

Preface -- 1. Exterior problems of partial differential equations. 1.1. Harmonic equation-potential theory. 1.2. Poisson equations. 1.3. Poisson equations-variational formulation. 1.4. Helmholtz equations. 1.5. Linear elasticity. 1.6. Bi-harmonic equations. 1.7. Steady Navier-Stokes equations-linearized problems. 1.8. Steady Navier-Stokes equations. 1.9. Heat equation. 1.10. Wave equation. 1.11. Maxwell equations. 1.12. Darwin model -- 2. Boundary element method. 2.1. Some typical domains. 2.2. General domains. 2.3. Subdivision of the domain. 2.4. Dirichlet to Neǔmann operator. 2.5. Finite part of divergent integrals. 2.6. Numerical approximation. 2.7. Error estimates. 2.8. Domain decomposition. 2.9. Boundary perturbation -- 3. Infinite element method. 3.1. Harmonic equation-two dimensional problems. 3.2. General elements. 3.3. Harmonic equation-three dimensional problems. 3.4. Inhomogeneous equations. 3.5. Plane elasticity. 3.6. Bi-harmonic equations. 3.7. Stokes equation. 3.8. Darwin model. 3.9. Elliptic equations with variable coefficients. 3.10. Convergence -- 4. Artificial boundary conditions. 4.1. Absorbing boundary conditions. 4.2. Some approximations. 4.3. Bayliss-Turkel radiation boundary conditions. 4.4. A lower order absorbing boundary condition. 4.5. Liao extrapolation in space and time. 4.6. Maxwell equations. 4.7. Finite difference schemes. 4.8. Stationary Navier-Stokes equations -- 5. Perfectly matched layer method. 5.1. Wave equations. 5.2. Bérenger's perfectly matched layers. 5.3. Stability analysis. 5.4. Uniaxial perfectly matched layers. 5.5. Maxwell equations. 5.6. Helmholtz equations -- 6. Spectral method. 6.1. Introduction. 6.2. Orthogonal systems of polynomials. 6.3. Laguerre spectral methods. 6.4. Jacobi spectral methods. 6.5. Rational and irrational spectral methods. 6.6. Error estimates

Fundamental Numerical Methods for Electrical Engineering

Fundamental Numerical Methods for Electrical Engineering
Title Fundamental Numerical Methods for Electrical Engineering PDF eBook
Author Stanislaw Rosloniec
Publisher Springer Science & Business Media
Pages 294
Release 2008-07-17
Genre Technology & Engineering
ISBN 3540795197

Download Fundamental Numerical Methods for Electrical Engineering Book in PDF, Epub and Kindle

Stormy development of electronic computation techniques (computer systems and software), observed during the last decades, has made possible automation of data processing in many important human activity areas, such as science, technology, economics and labor organization. In a broadly understood technology area, this developmentledtoseparationofspecializedformsofusingcomputersforthedesign and manufacturing processes, that is: – computer-aided design (CAD) – computer-aided manufacture (CAM) In order to show the role of computer in the rst of the two applications m- tioned above, let us consider basic stages of the design process for a standard piece of electronic system, or equipment: – formulation of requirements concerning user properties (characteristics, para- ters) of the designed equipment, – elaboration of the initial, possibly general electric structure, – determination of mathematical model of the system on the basis of the adopted electric structure, – determination of basic responses (frequency- or time-domain) of the system, on the base of previously established mathematical model, – repeated modi cation of the adopted diagram (changing its structure or element values) in case, when it does not satisfy the adopted requirements, – preparation of design and technological documentation, – manufacturing of model (prototype) series, according to the prepared docum- tation, – testing the prototype under the aspect of its electric properties, mechanical du- bility and sensitivity to environment conditions, – modi cation of prototype documentation, if necessary, and handing over the documentation to series production. The most important stages of the process under discussion are illustrated in Fig. I. 1. xi xii Introduction Fig. I.

Finite Element Methods for Maxwell's Equations

Finite Element Methods for Maxwell's Equations
Title Finite Element Methods for Maxwell's Equations PDF eBook
Author Peter Monk
Publisher Clarendon Press
Pages 468
Release 2003-04-17
Genre Mathematics
ISBN 0191545228

Download Finite Element Methods for Maxwell's Equations Book in PDF, Epub and Kindle

Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.

Finite Difference-boundary Element Methods in Infinite and Semi-infinite Media in Geomechanics

Finite Difference-boundary Element Methods in Infinite and Semi-infinite Media in Geomechanics
Title Finite Difference-boundary Element Methods in Infinite and Semi-infinite Media in Geomechanics PDF eBook
Author Ziad Halabi
Publisher
Pages 496
Release 2013
Genre
ISBN

Download Finite Difference-boundary Element Methods in Infinite and Semi-infinite Media in Geomechanics Book in PDF, Epub and Kindle

The engineering problems in Geomechanics and Geotechnical fields are commonly treated through the infinite or semi-infinite media. The best approach to solve these problems numerically is by coupling a finite element or a finite difference with boundary element numerical methods. Coupling the bounded domain modelled by Flac3D, a well-known program that implements an explicit finite difference method, with the boundary element method, which satisfies exactly the governing Partial Differential Equations (PDE) in the surrounding infinite or semi-infinite medium, combines the capabilities and the advantages of both methods. The Domain Decomposition Method (DDM) partitions the task of solving the PDE into separate computations over the coupled sub-domains. This method allows the FDM (Flac3D program) and the Boundary Element Method (BEM) program to work independently and interactively. In contrast, at the level of discretized equations, the coupling method requires building a complicated unified system of equations. Therefore, a Domain Decomposition Sequential Dirichlet-Neumann Iterative Coupling Method is developed in this thesis to couple both programs. The method is applied in four cases, 2D and 3D infinite and semi-infinite domains, using the appropriate fundamental solutions in the Boundary Integral Equation required for each case. After applying this method, the mechanical responses computed by Flac3D is corrected and the same responses far from the bounded domain are computed with less computer runtime (CPU) compared with the uncoupled Flac3D solution. The method is also verified by comparing the obtained numerical results with the corresponding analytical solutions. Two BEM pre and post processing intrinsic plug-ins are created, which provide access to the data of Flac3D, as well as the internal structure of the programming language embedded within Flac3D program. These intrinsics are 10 to 100 times faster to execute than the functions created using the Flac3D embedded language. Furthermore, the complementary part of the Kernels is derived based on Mindlin's fundamental solutions. These Kernels are required to compute the stress inside the 3D semi-infinite domain.

New Sinc Methods of Numerical Analysis

New Sinc Methods of Numerical Analysis
Title New Sinc Methods of Numerical Analysis PDF eBook
Author Gerd Baumann
Publisher Springer Nature
Pages 411
Release 2021-04-23
Genre Mathematics
ISBN 303049716X

Download New Sinc Methods of Numerical Analysis Book in PDF, Epub and Kindle

This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.

Fluid-Solid Interaction Dynamics

Fluid-Solid Interaction Dynamics
Title Fluid-Solid Interaction Dynamics PDF eBook
Author Jing Tang Xing
Publisher Academic Press
Pages 682
Release 2019-08-30
Genre Technology & Engineering
ISBN 0128193530

Download Fluid-Solid Interaction Dynamics Book in PDF, Epub and Kindle

Fluid-Solid Interaction Dynamics: Theory, Variational Principles, Numerical Methods and Applications gives a comprehensive accounting of fluid-solid interaction dynamics, including theory, numerical methods and their solutions for various FSI problems in engineering. The title provides the fundamental theories, methodologies and results developed in the application of FSI dynamics. Four numerical approaches that can be used with almost all integrated FSI systems in engineering are presented. Methods are linked with examples to illustrate results. In addition, numerical results are compared with available experiments or numerical data in order to demonstrate the accuracy of the approaches and their value to engineering applications. The title gives readers the state-of-the-art in theory, variational principles, numerical modeling and applications for fluid-solid interaction dynamics. Readers will be able to independently formulate models to solve their engineering FSI problems using information from this book. - Presents the state-of-the-art in fluid-solid interaction dynamics, providing theory, method and results - Takes an integrated approach to formulate, model and simulate FSI problems in engineering - Illustrates results with concrete examples - Gives four numerical approaches and related theories that are suitable for almost all integrated FSI systems - Provides the necessary information for bench scientists to independently formulate, model, and solve physical FSI problems in engineering