Numerical Methods for Physics
Title | Numerical Methods for Physics PDF eBook |
Author | Alejando L. Garcia |
Publisher | Createspace Independent Publishing Platform |
Pages | 0 |
Release | 2015-06-06 |
Genre | Differential equations, Partial |
ISBN | 9781514136683 |
This book covers a broad spectrum of the most important, basic numerical and analytical techniques used in physics -including ordinary and partial differential equations, linear algebra, Fourier transforms, integration and probability. Now language-independent. Features attractive new 3-D graphics. Offers new and significantly revised exercises. Replaces FORTRAN listings with C++, with updated versions of the FORTRAN programs now available on-line. Devotes a third of the book to partial differential equations-e.g., Maxwell's equations, the diffusion equation, the wave equation, etc. This numerical analysis book is designed for the programmer with a physics background. Previously published by Prentice Hall / Addison-Wesley
Numerical Methods in Physics with Python
Title | Numerical Methods in Physics with Python PDF eBook |
Author | Alex Gezerlis |
Publisher | Cambridge University Press |
Pages | 705 |
Release | 2023-07-31 |
Genre | Computers |
ISBN | 1009303856 |
A standalone text on computational physics combining idiomatic Python, foundational numerical methods, and physics applications.
Computational Methods for Physics
Title | Computational Methods for Physics PDF eBook |
Author | Joel Franklin |
Publisher | Cambridge University Press |
Pages | 419 |
Release | 2013-05-23 |
Genre | Science |
ISBN | 1107067855 |
There is an increasing need for undergraduate students in physics to have a core set of computational tools. Most problems in physics benefit from numerical methods, and many of them resist analytical solution altogether. This textbook presents numerical techniques for solving familiar physical problems where a complete solution is inaccessible using traditional mathematical methods. The numerical techniques for solving the problems are clearly laid out, with a focus on the logic and applicability of the method. The same problems are revisited multiple times using different numerical techniques, so readers can easily compare the methods. The book features over 250 end-of-chapter exercises. A website hosted by the author features a complete set of programs used to generate the examples and figures, which can be used as a starting point for further investigation. A link to this can be found at www.cambridge.org/9781107034303.
Numerical Methods for Solving Inverse Problems of Mathematical Physics
Title | Numerical Methods for Solving Inverse Problems of Mathematical Physics PDF eBook |
Author | A. A. Samarskii |
Publisher | Walter de Gruyter |
Pages | 453 |
Release | 2008-08-27 |
Genre | Mathematics |
ISBN | 3110205793 |
The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.
Fundamentals of Engineering Numerical Analysis
Title | Fundamentals of Engineering Numerical Analysis PDF eBook |
Author | Parviz Moin |
Publisher | Cambridge University Press |
Pages | 257 |
Release | 2010-08-23 |
Genre | Technology & Engineering |
ISBN | 1139489550 |
Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.
Computational Partial Differential Equations
Title | Computational Partial Differential Equations PDF eBook |
Author | Hans Petter Langtangen |
Publisher | Springer Science & Business Media |
Pages | 704 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 3662011700 |
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
Numerical Methods for Diffusion Phenomena in Building Physics
Title | Numerical Methods for Diffusion Phenomena in Building Physics PDF eBook |
Author | Nathan Mendes |
Publisher | Springer Nature |
Pages | 253 |
Release | 2019-11-29 |
Genre | Science |
ISBN | 3030315746 |
This book is the second edition of Numerical methods for diffusion phenomena in building physics: a practical introduction originally published by PUCPRESS (2016). It intends to stimulate research in simulation of diffusion problems in building physics, by providing an overview of mathematical models and numerical techniques such as the finite difference and finite-element methods traditionally used in building simulation tools. Nonconventional methods such as reduced order models, boundary integral approaches and spectral methods are presented, which might be considered in the next generation of building-energy-simulation tools. In this reviewed edition, an innovative way to simulate energy and hydrothermal performance are presented, bringing some light on innovative approaches in the field.