Numerical Methods and Methods of Approximation in Science and Engineering

Numerical Methods and Methods of Approximation in Science and Engineering
Title Numerical Methods and Methods of Approximation in Science and Engineering PDF eBook
Author Karan S. Surana
Publisher CRC Press
Pages 426
Release 2018-10-31
Genre Mathematics
ISBN 0429647867

Download Numerical Methods and Methods of Approximation in Science and Engineering Book in PDF, Epub and Kindle

Numerical Methods and Methods of Approximation in Science and Engineering prepares students and other readers for advanced studies involving applied numerical and computational analysis. Focused on building a sound theoretical foundation, it uses a clear and simple approach backed by numerous worked examples to facilitate understanding of numerical methods and their application. Readers will learn to structure a sequence of operations into a program, using the programming language of their choice; this approach leads to a deeper understanding of the methods and their limitations. Features: Provides a strong theoretical foundation for learning and applying numerical methods Takes a generic approach to engineering analysis, rather than using a specific programming language Built around a consistent, understandable model for conducting engineering analysis Prepares students for advanced coursework, and use of tools such as FEA and CFD Presents numerous detailed examples and problems, and a Solutions Manual for instructors

Approximation Methods in Science and Engineering

Approximation Methods in Science and Engineering
Title Approximation Methods in Science and Engineering PDF eBook
Author Reza N. Jazar
Publisher
Pages
Release 2020
Genre Approximation theory
ISBN 9781071604793

Download Approximation Methods in Science and Engineering Book in PDF, Epub and Kindle

Approximation Methods in Engineering and Science covers fundamental and advanced topics in three areas: Dimensional Analysis, Continued Fractions, and Stability Analysis of the Mathieu Differential Equation. Throughout the book, a strong emphasis is given to concepts and methods used in everyday calculations. Dimensional analysis is a crucial need for every engineer and scientist to be able to do experiments on scaled models and use the results in real world applications. Knowing that most nonlinear equations have no analytic solution, the power series solution is assumed to be the first approach to derive an approximate solution. However, this book will show the advantages of continued fractions and provides a systematic method to develop better approximate solutions in continued fractions. It also shows the importance of determining stability chart of the Mathieu equation and reviews and compares several approximate methods for that. The book provides the energy-rate method to study the stability of parametric differential equations that generates much better approximate solutions. Covers practical model-prototype analysis and nondimensionalization of differential equations; Coverage includes approximate methods of responses of nonlinear differential equations; Discusses how to apply approximation methods to analysis, design, optimization, and control problems; Discusses how to implement approximation methods to new aspects of engineering and physics including nonlinear vibration and vehicle dynamics

Numerical Approximation Methods

Numerical Approximation Methods
Title Numerical Approximation Methods PDF eBook
Author Harold Cohen
Publisher Springer Science & Business Media
Pages 493
Release 2011-09-28
Genre Mathematics
ISBN 1441998365

Download Numerical Approximation Methods Book in PDF, Epub and Kindle

This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.

A First Course in Numerical Methods

A First Course in Numerical Methods
Title A First Course in Numerical Methods PDF eBook
Author Uri M. Ascher
Publisher SIAM
Pages 574
Release 2011-07-14
Genre Mathematics
ISBN 0898719976

Download A First Course in Numerical Methods Book in PDF, Epub and Kindle

Offers students a practical knowledge of modern techniques in scientific computing.

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists
Title Numerical Methods for Engineers and Scientists PDF eBook
Author Joe D. Hoffman
Publisher CRC Press
Pages 840
Release 2018-10-03
Genre Mathematics
ISBN 1482270609

Download Numerical Methods for Engineers and Scientists Book in PDF, Epub and Kindle

Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."

Numerical Methods in Scientific Computing

Numerical Methods in Scientific Computing
Title Numerical Methods in Scientific Computing PDF eBook
Author Germund Dahlquist
Publisher SIAM
Pages 742
Release 2008-01-01
Genre Mathematics
ISBN 0898717787

Download Numerical Methods in Scientific Computing Book in PDF, Epub and Kindle

This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.

Numerical Methods for Solving Partial Differential Equations

Numerical Methods for Solving Partial Differential Equations
Title Numerical Methods for Solving Partial Differential Equations PDF eBook
Author George F. Pinder
Publisher John Wiley & Sons
Pages 414
Release 2018-02-05
Genre Technology & Engineering
ISBN 1119316383

Download Numerical Methods for Solving Partial Differential Equations Book in PDF, Epub and Kindle

A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.