Number Theory Revealed: An Introduction
Title | Number Theory Revealed: An Introduction PDF eBook |
Author | Andrew Granville |
Publisher | American Mathematical Soc. |
Pages | 290 |
Release | 2019-11-12 |
Genre | Education |
ISBN | 1470441578 |
Number Theory Revealed: An Introduction acquaints undergraduates with the “Queen of Mathematics”. The text offers a fresh take on congruences, power residues, quadratic residues, primes, and Diophantine equations and presents hot topics like cryptography, factoring, and primality testing. Students are also introduced to beautiful enlightening questions like the structure of Pascal's triangle mod p p and modern twists on traditional questions like the values represented by binary quadratic forms and large solutions of equations. Each chapter includes an “elective appendix” with additional reading, projects, and references. An expanded edition, Number Theory Revealed: A Masterclass, offers a more comprehensive approach to these core topics and adds additional material in further chapters and appendices, allowing instructors to create an individualized course tailored to their own (and their students') interests.
Number Theory Revealed: A Masterclass
Title | Number Theory Revealed: A Masterclass PDF eBook |
Author | Andrew Granville |
Publisher | American Mathematical Society |
Pages | 587 |
Release | 2020-09-23 |
Genre | Mathematics |
ISBN | 1470463709 |
Number Theory Revealed: A Masterclass acquaints enthusiastic students with the “Queen of Mathematics”. The text offers a fresh take on congruences, power residues, quadratic residues, primes, and Diophantine equations and presents hot topics like cryptography, factoring, and primality testing. Students are also introduced to beautiful enlightening questions like the structure of Pascal's triangle mod $p$ and modern twists on traditional questions like the values represented by binary quadratic forms, the anatomy of integers, and elliptic curves. This Masterclass edition contains many additional chapters and appendices not found in Number Theory Revealed: An Introduction, highlighting beautiful developments and inspiring other subjects in mathematics (like algebra). This allows instructors to tailor a course suited to their own (and their students') interests. There are new yet accessible topics like the curvature of circles in a tiling of a circle by circles, the latest discoveries on gaps between primes, a new proof of Mordell's Theorem for congruent elliptic curves, and a discussion of the $abc$-conjecture including its proof for polynomials. About the Author: Andrew Granville is the Canada Research Chair in Number Theory at the University of Montreal and professor of mathematics at University College London. He has won several international writing prizes for exposition in mathematics, including the 2008 Chauvenet Prize and the 2019 Halmos-Ford Prize, and is the author of Prime Suspects (Princeton University Press, 2019), a beautifully illustrated graphic novel murder mystery that explores surprising connections between the anatomies of integers and of permutations.
An Illustrated Theory of Numbers
Title | An Illustrated Theory of Numbers PDF eBook |
Author | Martin H. Weissman |
Publisher | American Mathematical Soc. |
Pages | 341 |
Release | 2020-09-15 |
Genre | Education |
ISBN | 1470463717 |
News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.
Introduction to Analytic Number Theory
Title | Introduction to Analytic Number Theory PDF eBook |
Author | Tom M. Apostol |
Publisher | Springer Science & Business Media |
Pages | 352 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 1475755791 |
"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS
Fermat's Last Theorem
Title | Fermat's Last Theorem PDF eBook |
Author | Harold M. Edwards |
Publisher | Springer Science & Business Media |
Pages | 436 |
Release | 2000-01-14 |
Genre | Mathematics |
ISBN | 9780387950020 |
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
Discrete Mathematics
Title | Discrete Mathematics PDF eBook |
Author | Oscar Levin |
Publisher | Createspace Independent Publishing Platform |
Pages | 342 |
Release | 2016-08-16 |
Genre | |
ISBN | 9781534970748 |
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
An introduction to the theory of numbers
Title | An introduction to the theory of numbers PDF eBook |
Author | Ivan Niven |
Publisher | |
Pages | 288 |
Release | 1993 |
Genre | Number theory |
ISBN | 9780852266304 |