Number Systems for Deep Neural Network Architectures

Number Systems for Deep Neural Network Architectures
Title Number Systems for Deep Neural Network Architectures PDF eBook
Author Ghada Alsuhli
Publisher Springer Nature
Pages 100
Release 2023-09-01
Genre Technology & Engineering
ISBN 3031381335

Download Number Systems for Deep Neural Network Architectures Book in PDF, Epub and Kindle

This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them.

Math and Architectures of Deep Learning

Math and Architectures of Deep Learning
Title Math and Architectures of Deep Learning PDF eBook
Author Krishnendu Chaudhury
Publisher Simon and Schuster
Pages 550
Release 2024-03-26
Genre Computers
ISBN 1617296481

Download Math and Architectures of Deep Learning Book in PDF, Epub and Kindle

Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. You'll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems.

Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks
Title Efficient Processing of Deep Neural Networks PDF eBook
Author Vivienne Sze
Publisher Springer Nature
Pages 254
Release 2022-05-31
Genre Technology & Engineering
ISBN 3031017668

Download Efficient Processing of Deep Neural Networks Book in PDF, Epub and Kindle

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Number Systems for Deep Neural Network Architectures

Number Systems for Deep Neural Network Architectures
Title Number Systems for Deep Neural Network Architectures PDF eBook
Author Ghada Alsuhli
Publisher Synthesis Lectures on Engineering, Science, and Technology
Pages 0
Release 2024-09-19
Genre
ISBN 9783031381355

Download Number Systems for Deep Neural Network Architectures Book in PDF, Epub and Kindle

Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications

Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications
Title Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications PDF eBook
Author José Manuel Ferrández Vicente
Publisher Springer Nature
Pages 675
Release 2022-05-24
Genre Medical
ISBN 3031062426

Download Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications Book in PDF, Epub and Kindle

The two volume set LNCS 13258 and 13259 constitutes the proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022, held in Puerto de la Cruz, Tenerife, Spain in May – June 2022. The total of 121 contributions was carefully reviewed and selected from 203 submissions. The papers are organized in two volumes, with the following topical sub-headings: Part I: Machine Learning in Neuroscience; Neuromotor and Cognitive Disorders; Affective Analysis; Health Applications, Part II: Affective Computing in Ambient Intelligence; Bioinspired Computing Approaches; Machine Learning in Computer Vision and Robot; Deep Learning; Artificial Intelligence Applications.

Next Generation Arithmetic

Next Generation Arithmetic
Title Next Generation Arithmetic PDF eBook
Author Marek Michalewicz
Publisher Springer Nature
Pages 133
Release
Genre
ISBN 3031727096

Download Next Generation Arithmetic Book in PDF, Epub and Kindle

Deep Learning

Deep Learning
Title Deep Learning PDF eBook
Author Ian Goodfellow
Publisher MIT Press
Pages 801
Release 2016-11-10
Genre Computers
ISBN 0262337371

Download Deep Learning Book in PDF, Epub and Kindle

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.