Nuclear Computational Science

Nuclear Computational Science
Title Nuclear Computational Science PDF eBook
Author Yousry Azmy
Publisher Springer Science & Business Media
Pages 476
Release 2010-04-15
Genre Technology & Engineering
ISBN 9048134110

Download Nuclear Computational Science Book in PDF, Epub and Kindle

Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Century in Review incorporates a number of carefully selected issues representing a variety of problems, providing the reader with a wealth of information in both a clear and concise manner. The comprehensive nature of the coverage and the stature of the contributing authors combine to make this a unique landmark publication. Targeting the medium to advanced level academic, this book will appeal to researchers and students with an interest in the progression of mathematical theory and its application to nuclear computational science.

Computational Nuclear Engineering and Radiological Science Using Python

Computational Nuclear Engineering and Radiological Science Using Python
Title Computational Nuclear Engineering and Radiological Science Using Python PDF eBook
Author Ryan McClarren
Publisher Academic Press
Pages 462
Release 2017-10-19
Genre Technology & Engineering
ISBN 0128123710

Download Computational Nuclear Engineering and Radiological Science Using Python Book in PDF, Epub and Kindle

Computational Nuclear Engineering and Radiological Science Using Python provides the necessary knowledge users need to embed more modern computing techniques into current practices, while also helping practitioners replace Fortran-based implementations with higher level languages. The book is especially unique in the market with its implementation of Python into nuclear engineering methods, seeking to do so by first teaching the basics of Python, then going through different techniques to solve systems of equations, and finally applying that knowledge to solve problems specific to nuclear engineering. Along with examples of code and end-of-chapter problems, the book is an asset to novice programmers in nuclear engineering and radiological sciences, teaching them how to analyze complex systems using modern computational techniques. For decades, the paradigm in engineering education, in particular, nuclear engineering, has been to teach Fortran along with numerical methods for solving engineering problems. This has been slowly changing as new codes have been written utilizing modern languages, such as Python, thus resulting in a greater need for the development of more modern computational skills and techniques in nuclear engineering. Offers numerical methods as a tool to solve specific problems in nuclear engineering Provides examples on how to simulate different problems and produce graphs using Python Supplies accompanying codes and data on a companion website, along with solutions to end-of-chapter problems

An Advanced Course in Computational Nuclear Physics

An Advanced Course in Computational Nuclear Physics
Title An Advanced Course in Computational Nuclear Physics PDF eBook
Author Morten Hjorth-Jensen
Publisher Springer
Pages 654
Release 2017-05-09
Genre Science
ISBN 3319533363

Download An Advanced Course in Computational Nuclear Physics Book in PDF, Epub and Kindle

This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.

Computational Nuclear Physics 1

Computational Nuclear Physics 1
Title Computational Nuclear Physics 1 PDF eBook
Author K. Langanke
Publisher Springer Science & Business Media
Pages 220
Release 2013-11-22
Genre Science
ISBN 3642763561

Download Computational Nuclear Physics 1 Book in PDF, Epub and Kindle

A variety of standard problems in theoretical nuclear-structure physics is addressed by the well-documented computer codes presented in this book. Most of these codes were available up to now only through personal contact. The subject matter ranges from microscopic models (the shell, Skyrme-Hartree-Fock, and cranked Nilsson models) through collective excitations (RPA, IBA, and geometric model) to the relativistic impulse approximation, three-body calculations, variational Monte Carlo methods, and electron scattering. The 5 1/4'' high-density floppy disk that comes with the book contains the FORTRAN codes of the problems that are tackled in each of the ten chapters. In the text, the precise theoretical foundations and motivations of each model or method are discussed together with the numerical methods employed. Instructions for the use of each code, and how to adapt them to local compilers and/or operating systems if necessary, are included.

Uncertainty Quantification and Predictive Computational Science

Uncertainty Quantification and Predictive Computational Science
Title Uncertainty Quantification and Predictive Computational Science PDF eBook
Author Ryan G. McClarren
Publisher Springer
Pages 349
Release 2018-11-23
Genre Science
ISBN 3319995251

Download Uncertainty Quantification and Predictive Computational Science Book in PDF, Epub and Kindle

This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.

A Survey of Computational Physics

A Survey of Computational Physics
Title A Survey of Computational Physics PDF eBook
Author Rubin Landau
Publisher Princeton University Press
Pages 685
Release 2011-10-30
Genre Science
ISBN 1400841186

Download A Survey of Computational Physics Book in PDF, Epub and Kindle

Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics. By treating science, applied mathematics, and computer science together, the book reveals how this knowledge base can be applied to a wider range of real-world problems than computational physics texts normally address. Designed for a one- or two-semester course, A Survey of Computational Physics will also interest anyone who wants a reference on or practical experience in the basics of computational physics. Accessible to advanced undergraduates Real-world problem-solving approach Java codes and applets integrated with text Companion Web site includes videos of lectures

Report of the Nuclear Physics and Related Computational Science R & D for Advanced Fuel Cycles Workshop, August 10-12, 2006, Bethesda, Maryland

Report of the Nuclear Physics and Related Computational Science R & D for Advanced Fuel Cycles Workshop, August 10-12, 2006, Bethesda, Maryland
Title Report of the Nuclear Physics and Related Computational Science R & D for Advanced Fuel Cycles Workshop, August 10-12, 2006, Bethesda, Maryland PDF eBook
Author
Publisher
Pages
Release 2006
Genre
ISBN

Download Report of the Nuclear Physics and Related Computational Science R & D for Advanced Fuel Cycles Workshop, August 10-12, 2006, Bethesda, Maryland Book in PDF, Epub and Kindle