Nonparametric Maximum Likelihood Estimator Based on Doubly-censored Data

Nonparametric Maximum Likelihood Estimator Based on Doubly-censored Data
Title Nonparametric Maximum Likelihood Estimator Based on Doubly-censored Data PDF eBook
Author Ting Li
Publisher
Pages 166
Release 1993
Genre
ISBN

Download Nonparametric Maximum Likelihood Estimator Based on Doubly-censored Data Book in PDF, Epub and Kindle

The Statistical Analysis of Interval-censored Failure Time Data

The Statistical Analysis of Interval-censored Failure Time Data
Title The Statistical Analysis of Interval-censored Failure Time Data PDF eBook
Author Jianguo Sun
Publisher Springer
Pages 310
Release 2007-05-26
Genre Mathematics
ISBN 0387371192

Download The Statistical Analysis of Interval-censored Failure Time Data Book in PDF, Epub and Kindle

This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

The Statistical Analysis of Doubly Truncated Data

The Statistical Analysis of Doubly Truncated Data
Title The Statistical Analysis of Doubly Truncated Data PDF eBook
Author Jacobo de Uña-Álvarez
Publisher John Wiley & Sons
Pages 196
Release 2021-11-22
Genre Medical
ISBN 1119951372

Download The Statistical Analysis of Doubly Truncated Data Book in PDF, Epub and Kindle

A thorough treatment of the statistical methods used to analyze doubly truncated data In The Statistical Analysis of Doubly Truncated Data, an expert team of statisticians delivers an up-to-date review of existing methods used to deal with randomly truncated data, with a focus on the challenging problem of random double truncation. The authors comprehensively introduce doubly truncated data before moving on to discussions of the latest developments in the field. The book offers readers examples with R code along with real data from astronomy, engineering, and the biomedical sciences to illustrate and highlight the methods described within. Linear regression models for doubly truncated responses are provided and the influence of the bandwidth in the performance of kernel-type estimators, as well as guidelines for the selection of the smoothing parameter, are explored. Fully nonparametric and semiparametric estimators are explored and illustrated with real data. R code for reproducing the data examples is also provided. The book also offers: A thorough introduction to the existing methods that deal with randomly truncated data Comprehensive explorations of linear regression models for doubly truncated responses Practical discussions of the influence of bandwidth in the performance of kernel-type estimators and guidelines for the selection of the smoothing parameter In-depth examinations of nonparametric and semiparametric estimators Perfect for statistical professionals with some background in mathematical statistics, biostatisticians, and mathematicians with an interest in survival analysis and epidemiology, The Statistical Analysis of Doubly Truncated Data is also an invaluable addition to the libraries of biomedical scientists and practitioners, as well as postgraduate students studying survival analysis.

Analysis of Doubly Truncated Data

Analysis of Doubly Truncated Data
Title Analysis of Doubly Truncated Data PDF eBook
Author Achim Dörre
Publisher Springer
Pages 123
Release 2019-05-13
Genre Mathematics
ISBN 9811362416

Download Analysis of Doubly Truncated Data Book in PDF, Epub and Kindle

This book introduces readers to statistical methodologies used to analyze doubly truncated data. The first book exclusively dedicated to the topic, it provides likelihood-based methods, Bayesian methods, non-parametric methods, and linear regression methods. These procedures can be used to effectively analyze continuous data, especially survival data arising in biostatistics and economics. Because truncation is a phenomenon that is often encountered in non-experimental studies, the methods presented here can be applied to many branches of science. The book provides R codes for most of the statistical methods, to help readers analyze their data. Given its scope, the book is ideally suited as a textbook for students of statistics, mathematics, econometrics, and other fields.

Interval-Censored Time-to-Event Data

Interval-Censored Time-to-Event Data
Title Interval-Censored Time-to-Event Data PDF eBook
Author Ding-Geng (Din) Chen
Publisher CRC Press
Pages 426
Release 2012-07-19
Genre Mathematics
ISBN 1466504285

Download Interval-Censored Time-to-Event Data Book in PDF, Epub and Kindle

Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research.Divid

Nonparametric Functional Estimation

Nonparametric Functional Estimation
Title Nonparametric Functional Estimation PDF eBook
Author B. L. S. Prakasa Rao
Publisher Academic Press
Pages 539
Release 2014-07-10
Genre Mathematics
ISBN 148326923X

Download Nonparametric Functional Estimation Book in PDF, Epub and Kindle

Nonparametric Functional Estimation is a compendium of papers, written by experts, in the area of nonparametric functional estimation. This book attempts to be exhaustive in nature and is written both for specialists in the area as well as for students of statistics taking courses at the postgraduate level. The main emphasis throughout the book is on the discussion of several methods of estimation and on the study of their large sample properties. Chapters are devoted to topics on estimation of density and related functions, the application of density estimation to classification problems, and the different facets of estimation of distribution functions. Statisticians and students of statistics and engineering will find the text very useful.

Information Bounds and Nonparametric Maximum Likelihood Estimation

Information Bounds and Nonparametric Maximum Likelihood Estimation
Title Information Bounds and Nonparametric Maximum Likelihood Estimation PDF eBook
Author P. Groeneboom
Publisher Birkhäuser
Pages 129
Release 2012-12-06
Genre Mathematics
ISBN 3034886217

Download Information Bounds and Nonparametric Maximum Likelihood Estimation Book in PDF, Epub and Kindle

This book contains the lecture notes for a DMV course presented by the authors at Gunzburg, Germany, in September, 1990. In the course we sketched the theory of information bounds for non parametric and semiparametric models, and developed the theory of non parametric maximum likelihood estimation in several particular inverse problems: interval censoring and deconvolution models. Part I, based on Jon Wellner's lectures, gives a brief sketch of information lower bound theory: Hajek's convolution theorem and extensions, useful minimax bounds for parametric problems due to Ibragimov and Has'minskii, and a recent result characterizing differentiable functionals due to van der Vaart (1991). The differentiability theorem is illustrated with the examples of interval censoring and deconvolution (which are pursued from the estimation perspective in part II). The differentiability theorem gives a way of clearly distinguishing situations in which 1 2 the parameter of interest can be estimated at rate n / and situations in which this is not the case. However it says nothing about which rates to expect when the functional is not differentiable. Even the casual reader will notice that several models are introduced, but not pursued in any detail; many problems remain. Part II, based on Piet Groeneboom's lectures, focuses on non parametric maximum likelihood estimates (NPMLE's) for certain inverse problems. The first chapter deals with the interval censoring problem.