Nonparametric Functional Estimation
Title | Nonparametric Functional Estimation PDF eBook |
Author | B. L. S. Prakasa Rao |
Publisher | Academic Press |
Pages | 539 |
Release | 2014-07-10 |
Genre | Mathematics |
ISBN | 148326923X |
Nonparametric Functional Estimation is a compendium of papers, written by experts, in the area of nonparametric functional estimation. This book attempts to be exhaustive in nature and is written both for specialists in the area as well as for students of statistics taking courses at the postgraduate level. The main emphasis throughout the book is on the discussion of several methods of estimation and on the study of their large sample properties. Chapters are devoted to topics on estimation of density and related functions, the application of density estimation to classification problems, and the different facets of estimation of distribution functions. Statisticians and students of statistics and engineering will find the text very useful.
Nonparametric Functional Estimation and Related Topics
Title | Nonparametric Functional Estimation and Related Topics PDF eBook |
Author | George Roussas |
Publisher | Springer Science & Business Media |
Pages | 732 |
Release | 1991-04-30 |
Genre | Mathematics |
ISBN | 9780792312260 |
About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.
Nonparametric Function Estimation, Modeling, and Simulation
Title | Nonparametric Function Estimation, Modeling, and Simulation PDF eBook |
Author | James R. Thompson |
Publisher | SIAM |
Pages | 320 |
Release | 1990-01-01 |
Genre | Mathematics |
ISBN | 9781611971712 |
Topics emphasized include nonparametric density estimation as an exploratory device plus the deeper models to which the exploratory analysis points, multi-dimensional data analysis, and analysis of remote sensing data, cancer progression, chaos theory, epidemiological modeling, and parallel based algorithms. New methods discussed are quick nonparametric density estimation based techniques for resampling and simulation based estimation techniques not requiring closed form solutions.
Introduction to Nonparametric Estimation
Title | Introduction to Nonparametric Estimation PDF eBook |
Author | Alexandre B. Tsybakov |
Publisher | Springer Science & Business Media |
Pages | 222 |
Release | 2008-10-22 |
Genre | Mathematics |
ISBN | 0387790527 |
Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Nonparametric Functional Estimation and Related Topics
Title | Nonparametric Functional Estimation and Related Topics PDF eBook |
Author | G.G Roussas |
Publisher | Springer Science & Business Media |
Pages | 691 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 9401132224 |
About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.
Nonparametric Curve Estimation
Title | Nonparametric Curve Estimation PDF eBook |
Author | Sam Efromovich |
Publisher | Springer Science & Business Media |
Pages | 423 |
Release | 2008-01-19 |
Genre | Mathematics |
ISBN | 0387226389 |
This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis. The companion software package, available over the Internet, brings all of the discussed topics into the realm of interactive research. Virtually every claim and development mentioned in the book is illustrated with graphs which are available for the reader to reproduce and modify, making the material fully transparent and allowing for complete interactivity.
Nonparametric Econometrics
Title | Nonparametric Econometrics PDF eBook |
Author | Jeffrey Scott Racine |
Publisher | Now Publishers Inc |
Pages | 103 |
Release | 2008 |
Genre | Econometrics |
ISBN | 1601981104 |
Nonparametric Econometrics is a primer for those who wish to familiarize themselves with nonparametric econometrics. While the underlying theory for many of these methods can be daunting for practitioners, this monograph presents a range of nonparametric methods that can be deployed in a fairly straightforward manner. Nonparametric methods are statistical techniques that do not require a researcher to specify functional forms for objects being estimated. The methods surveyed are known as kernel methods, which are becoming increasingly popular for applied data analysis. The appeal of nonparametric methods stems from the fact that they relax the parametric assumptions imposed on the data generating process and let the data determine an appropriate model. Nonparametric Econometrics focuses on a set of touchstone topics while making liberal use of examples for illustrative purposes. The author provides settings in which the user may wish to model a dataset comprised of continuous, discrete, or categorical data (nominal or ordinal), or any combination thereof. Recent developments are considered, including some where the variables involved may in fact be irrelevant, which alters the behavior of the estimators and optimal bandwidths in a manner that deviates substantially from conventional approaches.