Nonparametric Function Estimation with Left-truncated and Right-censored Data
Title | Nonparametric Function Estimation with Left-truncated and Right-censored Data PDF eBook |
Author | Jinho Park |
Publisher | |
Pages | 194 |
Release | 1995 |
Genre | |
ISBN |
Nonparametric Curve Estimation
Title | Nonparametric Curve Estimation PDF eBook |
Author | Sam Efromovich |
Publisher | Springer Science & Business Media |
Pages | 423 |
Release | 2008-01-19 |
Genre | Mathematics |
ISBN | 0387226389 |
This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis. The companion software package, available over the Internet, brings all of the discussed topics into the realm of interactive research. Virtually every claim and development mentioned in the book is illustrated with graphs which are available for the reader to reproduce and modify, making the material fully transparent and allowing for complete interactivity.
Missing and Modified Data in Nonparametric Estimation
Title | Missing and Modified Data in Nonparametric Estimation PDF eBook |
Author | Sam Efromovich |
Publisher | CRC Press |
Pages | 448 |
Release | 2018-03-12 |
Genre | Mathematics |
ISBN | 1351679848 |
This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.
Survival Analysis
Title | Survival Analysis PDF eBook |
Author | John P. Klein |
Publisher | Springer Science & Business Media |
Pages | 508 |
Release | 2013-06-29 |
Genre | Medical |
ISBN | 1475727283 |
Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.
The Statistical Analysis of Interval-censored Failure Time Data
Title | The Statistical Analysis of Interval-censored Failure Time Data PDF eBook |
Author | Jianguo Sun |
Publisher | Springer |
Pages | 310 |
Release | 2007-05-26 |
Genre | Mathematics |
ISBN | 0387371192 |
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.
Nonparametric Tests for Censored Data
Title | Nonparametric Tests for Censored Data PDF eBook |
Author | Vilijandas Bagdonavicius |
Publisher | John Wiley & Sons |
Pages | 162 |
Release | 2013-02-07 |
Genre | Mathematics |
ISBN | 1118602137 |
This book concerns testing hypotheses in non-parametric models. Generalizations of many non-parametric tests to the case of censored and truncated data are considered. Most of the test results are proved and real applications are illustrated using examples. Theories and exercises are provided. The incorrect use of many tests applying most statistical software is highlighted and discussed.
Survival Analysis: State of the Art
Title | Survival Analysis: State of the Art PDF eBook |
Author | John P. Klein |
Publisher | Springer Science & Business Media |
Pages | 446 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 9401579830 |
Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.