Nonlinear Stochastic PDEs
Title | Nonlinear Stochastic PDEs PDF eBook |
Author | Tadahisa Funaki |
Publisher | Springer Science & Business Media |
Pages | 319 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461384680 |
This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations was held during the week of March 21 at the Institute for Mathematics and Its Applications at the University of Minnesota. It was part of the Special Year on Emerging Applications of Probability program put together by an organizing committee chaired by J. Michael Steele. The selection of topics reflected personal interests of the organizers with two areas of emphasis: the hydrodynamic limit problems and Burgers' turbulence and related models. The talks and the papers appearing in this volume reflect a number of research directions that are currently pursued in these areas.
Stochastic Partial Differential Equations, Second Edition
Title | Stochastic Partial Differential Equations, Second Edition PDF eBook |
Author | Pao-Liu Chow |
Publisher | CRC Press |
Pages | 336 |
Release | 2014-12-10 |
Genre | Mathematics |
ISBN | 1466579552 |
Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.
Nonlinear Partial Differential Equations with Applications
Title | Nonlinear Partial Differential Equations with Applications PDF eBook |
Author | Tomás Roubicek |
Publisher | Springer Science & Business Media |
Pages | 415 |
Release | 2006-01-17 |
Genre | Mathematics |
ISBN | 3764373970 |
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Stochastic Partial Differential Equations and Related Fields
Title | Stochastic Partial Differential Equations and Related Fields PDF eBook |
Author | Andreas Eberle |
Publisher | Springer |
Pages | 565 |
Release | 2018-07-03 |
Genre | Mathematics |
ISBN | 3319749293 |
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.
Backward Stochastic Differential Equations
Title | Backward Stochastic Differential Equations PDF eBook |
Author | Jianfeng Zhang |
Publisher | Springer |
Pages | 392 |
Release | 2017-08-22 |
Genre | Mathematics |
ISBN | 1493972561 |
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Nonlinear PDEs
Title | Nonlinear PDEs PDF eBook |
Author | Marius Ghergu |
Publisher | Springer Science & Business Media |
Pages | 402 |
Release | 2011-10-21 |
Genre | Mathematics |
ISBN | 3642226647 |
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Stochastic Evolution Systems
Title | Stochastic Evolution Systems PDF eBook |
Author | Boris L. Rozovsky |
Publisher | Springer |
Pages | 340 |
Release | 2018-10-03 |
Genre | Mathematics |
ISBN | 3319948938 |
This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.