Nonlinear Optics in Semiconductors I
Title | Nonlinear Optics in Semiconductors I PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 445 |
Release | 1998-10-22 |
Genre | Science |
ISBN | 0080864562 |
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
The Elements of Nonlinear Optics
Title | The Elements of Nonlinear Optics PDF eBook |
Author | Paul N. Butcher |
Publisher | Cambridge University Press |
Pages | 364 |
Release | 1990 |
Genre | Science |
ISBN | 9780521424240 |
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Extreme Nonlinear Optics
Title | Extreme Nonlinear Optics PDF eBook |
Author | Martin Wegener |
Publisher | Springer Science & Business Media |
Pages | 225 |
Release | 2006-03-30 |
Genre | Science |
ISBN | 3540266887 |
Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The following chapters gradually guide the student towards the current "state of the art" and provide a comprehensive overview of the field. Every chapter is accompanied by exercises to deepen the reader's understanding of important topics, with detailed solutions at the end of the book.
Principles and Applications of Nonlinear Optical Materials
Title | Principles and Applications of Nonlinear Optical Materials PDF eBook |
Author | R.W. Munn |
Publisher | Springer Science & Business Media |
Pages | 265 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 9401121583 |
Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.
Nonlinear Optics
Title | Nonlinear Optics PDF eBook |
Author | Nicolaas Bloembergen |
Publisher | World Scientific |
Pages | 192 |
Release | 1996 |
Genre | Science |
ISBN | 9789810225995 |
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude. The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for experts specializing in this discipline and for scientists and students who wish to become acquainted with it. This is the fourth reprint and includes new references to the recent literature.
Nonlinear Optics: a Student's Perspective
Title | Nonlinear Optics: a Student's Perspective PDF eBook |
Author | Mark G. Kuzyk |
Publisher | Createspace Independent Publishing Platform |
Pages | 0 |
Release | 2017-08-18 |
Genre | Nonlinear optics |
ISBN | 9781523334636 |
*** Note to instructors. This book is available free of charge as an eBook on Perusall, the peer discussion forum. *** This unique textbook on nonlinear optics is written by award-winning teacher and researcher, Regents Professor Mark G. Kuzyk of Washington State University. It is ideal for a class or as a reference, and can be used for self study. Exercises are provided as material is introduced to reinforce concepts. The book's approach mirrors the author's philosophy that a firm grounding in the fundamentals will allow the student to tackle any topic. As such, many topics are left out while others are covered in depth to develop the intuition. Physics is meant to be savored, so this book should be consumed slowly with attention to the deeper meaning of the topics presented. The rest will naturally fall into place. Material not normally discussed in standard textbooks that is covered here includes the introduction of second quantization and how it can be applied to Feynman-like diagrams for calculating nonlinear susceptibilities. Dirac notation is introduced to facilitate the development of the theory with finesse. This approach provides a pictorial representation of light-matter interactions that leads to a more intuitive understanding of phenomena such as difference frequency generation, cascading and stimulated emission. An introduction to Python programming and solving simple numerical problems is briefly presented to get the student up to speed. In addition to unique problem sets that are not typically assigned in a course on nonlinear optics, a series of numerical problems are provided to both hone coding skills (the student can code in any language) and shed light on problems that have no analytical solution. Other unique topics covered are magnetic susceptibilities, nonlinear optics at negative absolute temperature, epsilon near zero materials, surface plasmons in various spatial dimensions, aperiodic nonlinear gratings to control the effective nonlinearity, nonlinear optics of single molecules, self-consistent methods for treating cascading as a local field and an in-depth derivation of optical multi-stability. This book is a total overhaul of "Lecture Notes in Nonlinear Optics: a student's perspective." Previous material is extensively augmented and rewritten for clarity and lots of new material has been added. While this newer book tries to take a student's perspective, it does not have the same raw narrative as the previous volume. Being so different in approach and content, it should be considered a new book rather than an updated edition of the previous one. If the more polished approach is not your thing, then go for the older book, which will remain available indefinitely.
Nonlinear Meta-Optics
Title | Nonlinear Meta-Optics PDF eBook |
Author | Costantino De Angelis |
Publisher | CRC Press |
Pages | 345 |
Release | 2020-05-20 |
Genre | Technology & Engineering |
ISBN | 1351269755 |
This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.