Nonlinear Integral Equations in Abstract Spaces
Title | Nonlinear Integral Equations in Abstract Spaces PDF eBook |
Author | Dajun Guo |
Publisher | Springer Science & Business Media |
Pages | 350 |
Release | 2013-11-22 |
Genre | Mathematics |
ISBN | 1461312817 |
Many problems arising in the physical sciences, engineering, biology and ap plied mathematics lead to mathematical models described by nonlinear integral equations in abstract spaces. The theory of nonlinear integral equations in ab stract spaces is a fast growing field with important applications to a number of areas of analysis as well as other branches of science. This book is devoted to a comprehensive treatment of nonlinear integral equations in abstract spaces. It is the first book that is dedicated to a systematic development of this subject, and it includes the developments during recent years. Chapter 1 introduces some basic results in analysis, which will be used in later chapters. Chapter 2, which is a main portion of this book, deals with nonlin ear integral equations in Banach spaces, including equations of Fredholm type, of Volterra type and equations of Hammerstein type. Some applica equations tions to nonlinear differential equations in Banach spaces are given. We also discuss an integral equation modelling infectious disease as a typical applica tion. In Chapter 3, we investigate the first order and second order nonlinear integro-differential equations in Banach spaces including equations of Volterra type and equations of mixed type. Chapter 4 is devoted to nonlinear impulsive integral equations in Banach spaces and their applications to nonlinear impul sive differential equations in Banach spaces.
Methods in Nonlinear Integral Equations
Title | Methods in Nonlinear Integral Equations PDF eBook |
Author | R Precup |
Publisher | Springer Science & Business Media |
Pages | 221 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 9401599866 |
Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.
Existence Theory for Nonlinear Integral and Integrodifferential Equations
Title | Existence Theory for Nonlinear Integral and Integrodifferential Equations PDF eBook |
Author | Donal O'Regan |
Publisher | Springer Science & Business Media |
Pages | 230 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 9401149925 |
The theory of integral and integrodifferential equations has ad vanced rapidly over the last twenty years. Of course the question of existence is an age-old problem of major importance. This mono graph is a collection of some of the most advanced results to date in this field. The book is organized as follows. It is divided into twelve chap ters. Each chapter surveys a major area of research. Specifically, some of the areas considered are Fredholm and Volterra integral and integrodifferential equations, resonant and nonresonant problems, in tegral inclusions, stochastic equations and periodic problems. We note that the selected topics reflect the particular interests of the authors. Donal 0 'Regan Maria Meehan CHAPTER 1 INTRODUCTION AND PRELIMINARIES 1.1. Introduction The aim of this book is firstly to provide a comprehensive existence the ory for integral and integrodifferential equations, and secondly to present some specialised topics in integral equations which we hope will inspire fur ther research in the area. To this end, the first part of the book deals with existence principles and results for nonlinear, Fredholm and Volterra inte gral and integrodifferential equations on compact and half-open intervals, while selected topics (which reflect the particular interests of the authors) such as nonresonance and resonance problems, equations in Banach spaces, inclusions, and stochastic equations are presented in the latter part.
Nonlinear Differential Equations of Monotone Types in Banach Spaces
Title | Nonlinear Differential Equations of Monotone Types in Banach Spaces PDF eBook |
Author | Viorel Barbu |
Publisher | Springer Science & Business Media |
Pages | 283 |
Release | 2010-01-01 |
Genre | Mathematics |
ISBN | 1441955429 |
This monograph is concerned with the basic results on Cauchy problems associated with nonlinear monotone operators in Banach spaces with applications to partial differential equations of evolutive type. It focuses on major results in recent decades.
Differential Equations in Banach Spaces
Title | Differential Equations in Banach Spaces PDF eBook |
Author | Giovanni Dore |
Publisher | CRC Press |
Pages | 290 |
Release | 1993-08-05 |
Genre | Mathematics |
ISBN | 9780824790677 |
This reference - based on the Conference on Differential Equations, held in Bologna - provides information on current research in parabolic and hyperbolic differential equations. Presenting methods and results in semigroup theory and their applications to evolution equations, this book focuses on topics including: abstract parabolic and hyperbolic linear differential equations; nonlinear abstract parabolic equations; holomorphic semigroups; and Volterra operator integral equations.;With contributions from international experts, Differential Equations in Banach Spaces is intended for research mathematicians in functional analysis, partial differential equations, operator theory and control theory; and students in these disciplines.
Nonlinear Equations in Abstract Spaces
Title | Nonlinear Equations in Abstract Spaces PDF eBook |
Author | V. Lakshmikantham |
Publisher | Elsevier |
Pages | 494 |
Release | 2014-05-27 |
Genre | Mathematics |
ISBN | 1483272109 |
Many problems in partial differential equations which arise from physical models can be considered as ordinary differential equations in appropriate infinite dimensional spaces, for which elegant theories and powerful techniques have recently been developed. This book gives a detailed account of the current state of the theory of nonlinear differential equations in a Banach space, and discusses existence theory for differential equations with continuous and discontinuous right-hand sides. Of special importance is the first systematic presentation of the very important and complex theory of multivalued discontinuous differential equations.
Polynomial Operator Equations in Abstract Spaces and Applications
Title | Polynomial Operator Equations in Abstract Spaces and Applications PDF eBook |
Author | Ioannis K. Argyros |
Publisher | CRC Press |
Pages | 586 |
Release | 2020-10-07 |
Genre | Mathematics |
ISBN | 1000099431 |
Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equation