Nonlinear Fokker-Planck Equations

Nonlinear Fokker-Planck Equations
Title Nonlinear Fokker-Planck Equations PDF eBook
Author T.D. Frank
Publisher Springer Science & Business Media
Pages 414
Release 2005-01-07
Genre Science
ISBN 3540212647

Download Nonlinear Fokker-Planck Equations Book in PDF, Epub and Kindle

Centered around the natural phenomena of relaxations and fluctuations, this monograph provides readers with a solid foundation in the linear and nonlinear Fokker-Planck equations that describe the evolution of distribution functions. It emphasizes principles and notions of the theory (e.g. self-organization, stochastic feedback, free energy, and Markov processes), while also illustrating the wide applicability (e.g. collective behavior, multistability, front dynamics, and quantum particle distribution). The focus is on relaxation processes in homogeneous many-body systems describable by nonlinear Fokker-Planck equations. Also treated are Langevin equations and correlation functions. Since these phenomena are exhibited by a diverse spectrum of systems, examples and applications span the fields of physics, biology and neurophysics, mathematics, psychology, and biomechanics.

Nonlinear Fokker-Planck Equations

Nonlinear Fokker-Planck Equations
Title Nonlinear Fokker-Planck Equations PDF eBook
Author T.D. Frank
Publisher Springer Science & Business Media
Pages 415
Release 2005-12-08
Genre Science
ISBN 3540264779

Download Nonlinear Fokker-Planck Equations Book in PDF, Epub and Kindle

Centered around the natural phenomena of relaxations and fluctuations, this monograph provides readers with a solid foundation in the linear and nonlinear Fokker-Planck equations that describe the evolution of distribution functions. It emphasizes principles and notions of the theory (e.g. self-organization, stochastic feedback, free energy, and Markov processes), while also illustrating the wide applicability (e.g. collective behavior, multistability, front dynamics, and quantum particle distribution). The focus is on relaxation processes in homogeneous many-body systems describable by nonlinear Fokker-Planck equations. Also treated are Langevin equations and correlation functions. Since these phenomena are exhibited by a diverse spectrum of systems, examples and applications span the fields of physics, biology and neurophysics, mathematics, psychology, and biomechanics.

The Fokker-planck Equation For Stochastic Dynamical Systems And Its Explicit Steady State Solutions

The Fokker-planck Equation For Stochastic Dynamical Systems And Its Explicit Steady State Solutions
Title The Fokker-planck Equation For Stochastic Dynamical Systems And Its Explicit Steady State Solutions PDF eBook
Author Christian Soize
Publisher World Scientific
Pages 345
Release 1994-05-16
Genre Mathematics
ISBN 9814502022

Download The Fokker-planck Equation For Stochastic Dynamical Systems And Its Explicit Steady State Solutions Book in PDF, Epub and Kindle

This is an analysis of multidimensional nonlinear dissipative Hamiltonian dynamical systems subjected to parametric and external stochastic excitations by the Fokker-Planck equation method.The author answers three types of questions concerning this area. First, what probabilistic tools are necessary for constructing a stochastic model and deriving the FKP equation for nonlinear stochastic dynamical systems? Secondly, what are the main results concerning the existence and uniqueness of an invariant measure and its associated stationary response? Finally, what is the class of multidimensional dynamical systems that have an explicit invariant measure and what are the fundamental examples for applications?

Fokker-Planck-Kolmogorov Equations

Fokker-Planck-Kolmogorov Equations
Title Fokker-Planck-Kolmogorov Equations PDF eBook
Author Vladimir I. Bogachev
Publisher American Mathematical Soc.
Pages 495
Release 2015-12-17
Genre Mathematics
ISBN 1470425580

Download Fokker-Planck-Kolmogorov Equations Book in PDF, Epub and Kindle

This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker-Planck-Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications
Title Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications PDF eBook
Author Johan Grasman
Publisher Springer Science & Business Media
Pages 242
Release 1999-03-08
Genre Mathematics
ISBN 9783540644354

Download Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications Book in PDF, Epub and Kindle

Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.

The Fokker-Planck Equation

The Fokker-Planck Equation
Title The Fokker-Planck Equation PDF eBook
Author Hannes Risken
Publisher Springer Science & Business Media
Pages 486
Release 2012-12-06
Genre Mathematics
ISBN 3642615449

Download The Fokker-Planck Equation Book in PDF, Epub and Kindle

This is the first textbook to include the matrix continued-fraction method, which is very effective in dealing with simple Fokker-Planck equations having two variables. Other methods covered are the simulation method, the eigen-function expansion, numerical integration, and the variational method. Each solution is applied to the statistics of a simple laser model and to Brownian motion in potentials. The whole is rounded off with a supplement containing a short review of new material together with some recent references. This new study edition will prove to be very useful for graduate students in physics, chemical physics, and electrical engineering, as well as for research workers in these fields.

PDE Models for Multi-Agent Phenomena

PDE Models for Multi-Agent Phenomena
Title PDE Models for Multi-Agent Phenomena PDF eBook
Author Pierre Cardaliaguet
Publisher Springer
Pages 225
Release 2018-12-22
Genre Mathematics
ISBN 3030019470

Download PDE Models for Multi-Agent Phenomena Book in PDF, Epub and Kindle

This volume covers selected topics addressed and discussed during the workshop “PDE models for multi-agent phenomena,” which was held in Rome, Italy, from November 28th to December 2nd, 2016. The content mainly focuses on kinetic equations and mean field games, which provide a solid framework for the description of multi-agent phenomena. The book includes original contributions on the theoretical and numerical study of the MFG system: the uniqueness issue and finite difference methods for the MFG system, MFG with state constraints, and application of MFG to market competition. The book also presents new contributions on the analysis and numerical approximation of the Fokker-Planck-Kolmogorov equations, the isotropic Landau model, the dynamical approach to the quantization problem and the asymptotic methods for fully nonlinear elliptic equations. Chiefly intended for researchers interested in the mathematical modeling of collective phenomena, the book provides an essential overview of recent advances in the field and outlines future research directions.