Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems
Title Nonequilibrium Many-Body Theory of Quantum Systems PDF eBook
Author Gianluca Stefanucci
Publisher Cambridge University Press
Pages 619
Release 2013-03-07
Genre Science
ISBN 1107354579

Download Nonequilibrium Many-Body Theory of Quantum Systems Book in PDF, Epub and Kindle

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

Quantum Field Theory of Non-equilibrium States

Quantum Field Theory of Non-equilibrium States
Title Quantum Field Theory of Non-equilibrium States PDF eBook
Author Jørgen Rammer
Publisher Cambridge University Press
Pages 0
Release 2011-03-03
Genre Science
ISBN 9780521188005

Download Quantum Field Theory of Non-equilibrium States Book in PDF, Epub and Kindle

Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.

Quantum Kinetic Theory

Quantum Kinetic Theory
Title Quantum Kinetic Theory PDF eBook
Author Michael Bonitz
Publisher Springer
Pages 412
Release 2015-11-20
Genre Science
ISBN 3319241214

Download Quantum Kinetic Theory Book in PDF, Epub and Kindle

This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

21st Century Nanoscience – A Handbook

21st Century Nanoscience – A Handbook
Title 21st Century Nanoscience – A Handbook PDF eBook
Author Klaus D. Sattler
Publisher CRC Press
Pages 371
Release 2019-11-21
Genre Science
ISBN 1000497429

Download 21st Century Nanoscience – A Handbook Book in PDF, Epub and Kindle

This up-to-date reference is the most comprehensive summary of the field of nanoscience and its applications. It begins with fundamental properties at the nanoscale and then goes well beyond into the practical aspects of the design, synthesis, and use of nanomaterials in various industries. It emphasizes the vast strides made in the field over the past decade – the chapters focus on new, promising directions as well as emerging theoretical and experimental methods. The contents incorporate experimental data and graphs where appropriate, as well as supporting tables and figures with a tutorial approach.

21st Century Nanoscience

21st Century Nanoscience
Title 21st Century Nanoscience PDF eBook
Author Klaus D. Sattler
Publisher CRC Press
Pages 4153
Release 2022-01-18
Genre Science
ISBN 1351260553

Download 21st Century Nanoscience Book in PDF, Epub and Kindle

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

Green’s Functions in Quantum Physics

Green’s Functions in Quantum Physics
Title Green’s Functions in Quantum Physics PDF eBook
Author Eleftherios N. Economou
Publisher Springer Science & Business Media
Pages 325
Release 2013-03-14
Genre Science
ISBN 3662023695

Download Green’s Functions in Quantum Physics Book in PDF, Epub and Kindle

In this edition the second and main part of the book has been considerably expanded as to cover important applications of the formalism. In Chap.5 a section was added outlining the extensive role of the tight binding (or equivalently the linear combination of atomic-like orbitals) approach to many branches of solid-state physics. Some additional informa tion (including a table of numerical values) regarding square and cubic lattice Green's functions were incorporated. In Chap.6 the difficult subjects of superconductivity and the Kondo effect are examined by employing an appealingly simple connection to the question of the existence of a bound state in a very shallow potential well. The existence of such a bound state depends entirely on the form of the un perturbed density of states near the end of the spectrum: if the density of states blows up there is always at least one bound state. If the density of states approaches zero continuously, a critical depth (and/or width) of the well must be reached in order to have a bound state. The borderline case of a finite discontinuity (which is very important to superconductivity and the Kondo effect) always produces a bound state with an exponentially small binding energy.

An Introduction to Quantum Transport in Semiconductors

An Introduction to Quantum Transport in Semiconductors
Title An Introduction to Quantum Transport in Semiconductors PDF eBook
Author David K. Ferry
Publisher CRC Press
Pages 323
Release 2017-12-14
Genre Science
ISBN 1351796372

Download An Introduction to Quantum Transport in Semiconductors Book in PDF, Epub and Kindle

Throughout their college career, most engineering students have done problems and studies that are basically situated in the classical world. Some may have taken quantum mechanics as their chosen field of study. This book moves beyond the basics to highlight the full quantum mechanical nature of the transport of carriers through nanoelectronic structures. The book is unique in that addresses quantum transport only in the materials that are of interest to microelectronics—semiconductors, with their variable densities and effective masses. The author develops Green’s functions starting from equilibrium Green’s functions and going through modern time-dependent approaches to non-equilibrium Green’s functions, introduces relativistic bands for graphene and topological insulators and discusses the quantum transport changes that these bands induce, and discusses applications such as weak localization and phase breaking processes, resonant tunneling diodes, single-electron tunneling, and entanglement. Furthermore, he also explains modern ensemble Monte Carlo approaches to simulation of various approaches to quantum transport and the hydrodynamic approaches to quantum transport. All in all, the book describes all approaches to quantum transport in semiconductors, thus becoming an essential textbook for advanced graduate students in electrical engineering or physics.