Noncommutative Geometry and Optimal Transport

Noncommutative Geometry and Optimal Transport
Title Noncommutative Geometry and Optimal Transport PDF eBook
Author Pierre Martinetti
Publisher American Mathematical Soc.
Pages 234
Release 2016-10-26
Genre Mathematics
ISBN 1470422972

Download Noncommutative Geometry and Optimal Transport Book in PDF, Epub and Kindle

The distance formula in noncommutative geometry was introduced by Connes at the end of the 1980s. It is a generalization of Riemannian geodesic distance that makes sense in a noncommutative setting, and provides an original tool to study the geometry of the space of states on an algebra. It also has an intriguing echo in physics, for it yields a metric interpretation for the Higgs field. In the 1990s, Rieffel noticed that this distance is a noncommutative version of the Wasserstein distance of order 1 in the theory of optimal transport. More exactly, this is a noncommutative generalization of Kantorovich dual formula of the Wasserstein distance. Connes distance thus offers an unexpected connection between an ancient mathematical problem and the most recent discovery in high energy physics. The meaning of this connection is far from clear. Yet, Rieffel's observation suggests that Connes distance may provide an interesting starting point for a theory of optimal transport in noncommutative geometry. This volume contains several review papers that will give the reader an extensive introduction to the metric aspect of noncommutative geometry and its possible interpretation as a Wasserstein distance on a quantum space, as well as several topic papers.

Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics
Title Noncommutative Geometry and Particle Physics PDF eBook
Author Walter D. van Suijlekom
Publisher Springer
Pages 246
Release 2014-07-21
Genre Science
ISBN 9401791627

Download Noncommutative Geometry and Particle Physics Book in PDF, Epub and Kindle

This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Noncommutative Geometry

Noncommutative Geometry
Title Noncommutative Geometry PDF eBook
Author Alain Connes
Publisher Springer Science & Business Media
Pages 372
Release 2003-12-08
Genre Mathematics
ISBN 9783540203575

Download Noncommutative Geometry Book in PDF, Epub and Kindle

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Optimal Transportation and Applications

Optimal Transportation and Applications
Title Optimal Transportation and Applications PDF eBook
Author Luigi Ambrosio
Publisher Springer Science & Business Media
Pages 184
Release 2003-06-12
Genre Mathematics
ISBN 9783540401926

Download Optimal Transportation and Applications Book in PDF, Epub and Kindle

Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view. The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.

Symplectic 4-Manifolds and Algebraic Surfaces

Symplectic 4-Manifolds and Algebraic Surfaces
Title Symplectic 4-Manifolds and Algebraic Surfaces PDF eBook
Author Denis Auroux
Publisher Springer Science & Business Media
Pages 363
Release 2008-04-17
Genre Mathematics
ISBN 3540782788

Download Symplectic 4-Manifolds and Algebraic Surfaces Book in PDF, Epub and Kindle

Modern approaches to the study of symplectic 4-manifolds and algebraic surfaces combine a wide range of techniques and sources of inspiration. Gauge theory, symplectic geometry, pseudoholomorphic curves, singularity theory, moduli spaces, braid groups, monodromy, in addition to classical topology and algebraic geometry, combine to make this one of the most vibrant and active areas of research in mathematics. It is our hope that the five lectures of the present volume given at the C.I.M.E. Summer School held in Cetraro, Italy, September 2-10, 2003 will be useful to people working in related areas of mathematics and will become standard references on these topics. The volume is a coherent exposition of an active field of current research focusing on the introduction of new methods for the study of moduli spaces of complex structures on algebraic surfaces, and for the investigation of symplectic topology in dimension 4 and higher.

Inverse Problems and Imaging

Inverse Problems and Imaging
Title Inverse Problems and Imaging PDF eBook
Author Luis L. Bonilla
Publisher Springer
Pages 207
Release 2009-06-19
Genre Mathematics
ISBN 3540785477

Download Inverse Problems and Imaging Book in PDF, Epub and Kindle

Nowadays we are facing numerous and important imaging problems: nondestructive testing of materials, monitoring of industrial processes, enhancement of oil production by efficient reservoir characterization, emerging developments in noninvasive imaging techniques for medical purposes - computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), X-ray and ultrasound tomography, etc. In the CIME Summer School on Imaging (Martina Franca, Italy 2002), leading experts in mathematical techniques and applications presented broad and useful introductions for non-experts and practitioners alike to many aspects of this exciting field. The volume contains part of the above lectures completed and updated by additional contributions on other related topics.

SPDE in Hydrodynamics: Recent Progress and Prospects

SPDE in Hydrodynamics: Recent Progress and Prospects
Title SPDE in Hydrodynamics: Recent Progress and Prospects PDF eBook
Author Sergio Albeverio
Publisher Springer Science & Business Media
Pages 183
Release 2008-04-14
Genre Mathematics
ISBN 3540784926

Download SPDE in Hydrodynamics: Recent Progress and Prospects Book in PDF, Epub and Kindle

Of the three lecture courses making up the CIME summer school on Fluid Dynamics at Cetraro in 2005 reflected in this volume, the first, due to Sergio Albeverio describes deterministic and stochastic models of hydrodynamics. In the second course, Franco Flandoli starts from 3D Navier-Stokes equations and ends with turbulence. Finally, Yakov Sinai, in the 3rd course, describes some rigorous mathematical results for multidimensional Navier-Stokes systems and some recent results on the one-dimensional Burgers equation with random forcing.