Non-recursive Models in Control System Analysis and Design

Non-recursive Models in Control System Analysis and Design
Title Non-recursive Models in Control System Analysis and Design PDF eBook
Author Mihail Voicu
Publisher
Pages 152
Release 1997
Genre Automatic control
ISBN

Download Non-recursive Models in Control System Analysis and Design Book in PDF, Epub and Kindle

Non-Recursive Behavioural Models in Control Analysis and Design

Non-Recursive Behavioural Models in Control Analysis and Design
Title Non-Recursive Behavioural Models in Control Analysis and Design PDF eBook
Author Mihail Voicu
Publisher Cambridge Scholars Publishing
Pages 185
Release 2023-11-15
Genre Language Arts & Disciplines
ISBN 152754303X

Download Non-Recursive Behavioural Models in Control Analysis and Design Book in PDF, Epub and Kindle

This book develops a nonstandard approach to control systems analysis and design, exploring the properties of a new type of model called non-recursive behavioural models, unlike the recursive behavioural models of classical state space representation. For a real plant exhibiting a linear behaviour in the vicinity of any operating point, a non-recursive behavioural model (associated with an operating point) is defined as a coherent collection of appropriately selected input-state transfers, where, for a given timeline, the plant is actuated by piecewise constant input vectors. This work successively presents: mathematical preliminaries, definitions of linear non-recursive behavioural models, techniques for state controllability analysis, procedures for feedback control and optimal control design. All theoretical results are illustrated by laboratory experiments. This monograph is useful for postgraduate students, research workers and practitioners interested in systems theory and its applications.

European Control Conference 1995

European Control Conference 1995
Title European Control Conference 1995 PDF eBook
Author
Publisher European Control Association
Pages 882
Release 1995-09-05
Genre
ISBN

Download European Control Conference 1995 Book in PDF, Epub and Kindle

Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995

Mathematical Reviews

Mathematical Reviews
Title Mathematical Reviews PDF eBook
Author
Publisher
Pages 1078
Release 2004
Genre Mathematics
ISBN

Download Mathematical Reviews Book in PDF, Epub and Kindle

Model-Based Control:

Model-Based Control:
Title Model-Based Control: PDF eBook
Author Paul M.J. van den Hof
Publisher Springer Science & Business Media
Pages 239
Release 2009-08-05
Genre Technology & Engineering
ISBN 1441908951

Download Model-Based Control: Book in PDF, Epub and Kindle

Model-Based Control will be a collection of state-of-the-art contributions in the field of modelling, identification, robust control and optimization of dynamical systems, with particular attention to the application domains of motion control systems (high-accuracy positioning systems) and large scale industrial process control systems.The book will be directed to academic and industrial people involved in research in systems and control, industrial process control and mechatronics.

Probabilistic modeling for sensor fusion with inertial measurements

Probabilistic modeling for sensor fusion with inertial measurements
Title Probabilistic modeling for sensor fusion with inertial measurements PDF eBook
Author Manon Kok
Publisher Linköping University Electronic Press
Pages 73
Release 2016-12-15
Genre
ISBN 9176856216

Download Probabilistic modeling for sensor fusion with inertial measurements Book in PDF, Epub and Kindle

In recent years, inertial sensors have undergone major developments. The quality of their measurements has improved while their cost has decreased, leading to an increase in availability. They can be found in stand-alone sensor units, so-called inertial measurement units, but are nowadays also present in for instance any modern smartphone, in Wii controllers and in virtual reality headsets. The term inertial sensor refers to the combination of accelerometers and gyroscopes. These measure the external specific force and the angular velocity, respectively. Integration of their measurements provides information about the sensor's position and orientation. However, the position and orientation estimates obtained by simple integration suffer from drift and are therefore only accurate on a short time scale. In order to improve these estimates, we combine the inertial sensors with additional sensors and models. To combine these different sources of information, also called sensor fusion, we make use of probabilistic models to take the uncertainty of the different sources of information into account. The first contribution of this thesis is a tutorial paper that describes the signal processing foundations underlying position and orientation estimation using inertial sensors. In a second contribution, we use data from multiple inertial sensors placed on the human body to estimate the body's pose. A biomechanical model encodes the knowledge about how the different body segments are connected to each other. We also show how the structure inherent to this problem can be exploited. This opens up for processing long data sets and for solving the problem in a distributed manner. Inertial sensors can also be combined with time of arrival measurements from an ultrawideband (UWB) system. We focus both on calibration of the UWB setup and on sensor fusion of the inertial and UWB measurements. The UWB measurements are modeled by a tailored heavy-tailed asymmetric distribution. This distribution naturally handles the possibility of measurement delays due to multipath and non-line-of-sight conditions while not allowing for the possibility of measurements arriving early, i.e. traveling faster than the speed of light. Finally, inertial sensors can be combined with magnetometers. We derive an algorithm that can calibrate a magnetometer for the presence of metallic objects attached to the sensor. Furthermore, the presence of metallic objects in the environment can be exploited by using them as a source of position information. We present a method to build maps of the indoor magnetic field and experimentally show that if a map of the magnetic field is available, accurate position estimates can be obtained by combining inertial and magnetometer measurements.

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Accelerating Monte Carlo methods for Bayesian inference in dynamical models
Title Accelerating Monte Carlo methods for Bayesian inference in dynamical models PDF eBook
Author Johan Dahlin
Publisher Linköping University Electronic Press
Pages 139
Release 2016-03-22
Genre
ISBN 9176857972

Download Accelerating Monte Carlo methods for Bayesian inference in dynamical models Book in PDF, Epub and Kindle

Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.