Euclidean and Non-Euclidean Geometries
Title | Euclidean and Non-Euclidean Geometries PDF eBook |
Author | Marvin J. Greenberg |
Publisher | Macmillan |
Pages | 512 |
Release | 1993-07-15 |
Genre | Mathematics |
ISBN | 9780716724469 |
This classic text provides overview of both classic and hyperbolic geometries, placing the work of key mathematicians/ philosophers in historical context. Coverage includes geometric transformations, models of the hyperbolic planes, and pseudospheres.
Introductory Non-Euclidean Geometry
Title | Introductory Non-Euclidean Geometry PDF eBook |
Author | Henry Parker Manning |
Publisher | Courier Corporation |
Pages | 110 |
Release | 2013-01-30 |
Genre | Mathematics |
ISBN | 0486154645 |
This fine and versatile introduction begins with the theorems common to Euclidean and non-Euclidean geometry, and then it addresses the specific differences that constitute elliptic and hyperbolic geometry. 1901 edition.
Non-Euclidean Geometries
Title | Non-Euclidean Geometries PDF eBook |
Author | András Prékopa |
Publisher | Springer Science & Business Media |
Pages | 497 |
Release | 2006-06-03 |
Genre | Mathematics |
ISBN | 0387295550 |
"From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics.
A History of Non-Euclidean Geometry
Title | A History of Non-Euclidean Geometry PDF eBook |
Author | Boris A. Rosenfeld |
Publisher | Springer Science & Business Media |
Pages | 481 |
Release | 2012-09-08 |
Genre | Mathematics |
ISBN | 1441986804 |
The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth anniversary of the historic day of February 23, 1826, when LobaeevskiI delivered his famous lecture on his discovery of non-Euclidean geometry. The importance of the discovery of non-Euclidean geometry goes far beyond the limits of geometry itself. It is safe to say that it was a turning point in the history of all mathematics. The scientific revolution of the seventeenth century marked the transition from "mathematics of constant magnitudes" to "mathematics of variable magnitudes. " During the seventies of the last century there occurred another scientific revolution. By that time mathematicians had become familiar with the ideas of non-Euclidean geometry and the algebraic ideas of group and field (all of which appeared at about the same time), and the (later) ideas of set theory. This gave rise to many geometries in addition to the Euclidean geometry previously regarded as the only conceivable possibility, to the arithmetics and algebras of many groups and fields in addition to the arith metic and algebra of real and complex numbers, and, finally, to new mathe matical systems, i. e. , sets furnished with various structures having no classical analogues. Thus in the 1870's there began a new mathematical era usually called, until the middle of the twentieth century, the era of modern mathe matics.
Euclidean and Non-Euclidean Geometry International Student Edition
Title | Euclidean and Non-Euclidean Geometry International Student Edition PDF eBook |
Author | Patrick J. Ryan |
Publisher | Cambridge University Press |
Pages | 237 |
Release | 2009-09-04 |
Genre | Mathematics |
ISBN | 0521127076 |
This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.
Modern Geometries
Title | Modern Geometries PDF eBook |
Author | Michael Henle |
Publisher | Pearson |
Pages | 404 |
Release | 2001 |
Genre | Mathematics |
ISBN |
Engaging, accessible, and extensively illustrated, this brief, but solid introduction to modern geometry describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists. Basically non-Euclidean in approach, it relates geometry to familiar ideas from analytic geometry, staying firmly in the Cartesian plane. It uses the principle geometric concept of congruence or geometric transformation--introducing and using the Erlanger Program explicitly throughout. It features significant modern applications of geometry--e.g., the geometry of relativity, symmetry, art and crystallography, finite geometry and computation. Covers a full range of topics from plane geometry, projective geometry, solid geometry, discrete geometry, and axiom systems. For anyone interested in an introduction to geometry used by contemporary mathematicians and theoretical scientists.
Euclidean and Non-euclidean Geometries
Title | Euclidean and Non-euclidean Geometries PDF eBook |
Author | Maria Helena Noronha |
Publisher | |
Pages | 440 |
Release | 2002 |
Genre | Mathematics |
ISBN |
This book develops a self-contained treatment of classical Euclidean geometry through both axiomatic and analytic methods. Concise and well organized, it prompts readers to prove a theorem yet provides them with a framework for doing so. Chapter topics cover neutral geometry, Euclidean plane geometry, geometric transformations, Euclidean 3-space, Euclidean n-space; perimeter, area and volume; spherical geometry; hyperbolic geometry; models for plane geometries; and the hyperbolic metric.