Non-Destructive Passive Magnetic and Ultrasonic Inspection Methods for Condition Assessment of Reinforced Concrete

Non-Destructive Passive Magnetic and Ultrasonic Inspection Methods for Condition Assessment of Reinforced Concrete
Title Non-Destructive Passive Magnetic and Ultrasonic Inspection Methods for Condition Assessment of Reinforced Concrete PDF eBook
Author SeyedBijan Mahbaz
Publisher
Pages
Release 2016
Genre
ISBN

Download Non-Destructive Passive Magnetic and Ultrasonic Inspection Methods for Condition Assessment of Reinforced Concrete Book in PDF, Epub and Kindle

Nondestructive Testing in Composite Materials

Nondestructive Testing in Composite Materials
Title Nondestructive Testing in Composite Materials PDF eBook
Author Carosena Meola
Publisher MDPI
Pages 174
Release 2020-12-04
Genre Technology & Engineering
ISBN 3039437313

Download Nondestructive Testing in Composite Materials Book in PDF, Epub and Kindle

In this era of technological progress and given the need for welfare and safety, everything that is manufactured and maintained must comply with such needs. We would all like to live in a safe house that will not collapse on us. We would all like to walk on a safe road and never see a chasm open in front of us. We would all like to cross a bridge and reach the other side safely. We all would like to feel safe and secure when taking a plane, ship, train, or using any equipment. All this may be possible with the adoption of adequate manufacturing processes, with non-destructive inspection of final parts and monitoring during the in-service life of components. Above all, maintenance should be imperative. This requires effective non-destructive testing techniques and procedures. This Special Issue is a collection of some of the latest research in these areas, aiming to highlight new ideas and ways to deal with challenging issues worldwide. Different types of materials and structures are considered, different non-destructive testing techniques are employed with new approaches for data treatment proposed as well as numerical simulations. This can serve as food for thought for the community involved in the inspection of materials and structures as well as condition monitoring.

Improving Passive Magnetic Inspection for Reinforced Concrete Condition Assessment

Improving Passive Magnetic Inspection for Reinforced Concrete Condition Assessment
Title Improving Passive Magnetic Inspection for Reinforced Concrete Condition Assessment PDF eBook
Author Milad Mosharafi
Publisher
Pages
Release 2020
Genre
ISBN

Download Improving Passive Magnetic Inspection for Reinforced Concrete Condition Assessment Book in PDF, Epub and Kindle

Life quality, industrial productivity, and community safety can be assured by the reliability and the safety of infrastructure such as highways, bridges, and energy-supply systems. Reinforced concrete is the most-commonly used massive construction material in urban, road and industrial infrastructure because of its mechanical properties, durability, and mouldability. Concrete has acceptable compressive strength but relatively low tensile strength, so steel reinforcement rods (rebar) are usually added to concrete to enhance its tensile strength. However, steel rebar is subject to the serious and costly problem of corrosion, which eventually can significantly degrade the mechanical properties of concrete. Quantifying the corrosion condition of reinforcing steel can help manage associated risks arising from the unexpected function failure of reinforced concrete structures. In efforts to avoid such failures, engineers rely on quantitative time-history condition monitoring of reinforcing steel to help make decisions on rehabilitation, decommissioning, or replacement of concrete infrastructure. The self-magnetic behaviour of ferromagnetic materials can be used for quantitative condition assessment. Inspection of reinforced concrete structures by a method based on this concept is under development. Improving the data recording, mathematical simulation and interpretation so as to obtain more-reliable outcomes from this novel NDT technology (Passive Magnetic Inspection (PMI)) is the main aim of this research project. This thesis, consisting of eight chapters, investigates various experiments and simulations, and delineates future work: Chapter 1 includes the introduction, theoretical background, and research objectives; Chapter 2 consists of numerical simulations and experimental results on the passive magnetic behavior of a rebar with pitting; Chapter 3 represents the simulations and experimental results of the investigations on rebars with local longitudinal defects; Chapter 4 investigates the self-magnetic behaviour of rebars with different sizes of crack; Chapter 5 covers numerical simulations and experimental results of passive magnetic behavior of an intact rebar and a rebar with general corrosion; Chapter 6 compares the magnetic flux density values generated from rebars with different degrees of general corrosion; Chapter 7 describes a successful fieldwork project; Chapter 8 outlines a general conclusion and future works that can help the further improvement of the inspection technology. To explain the content of the thesis in more detail, through the analysis of magnetic data, Chapters 2, 3, and 4 cover methods for identifying the local defects in steel reinforcements, and Chapters 5 and 6 focus on realizing the general corrosion of steel rebars. Applicable findings generated from Chapter 2 to Chapter 6 are used in detecting and categorizing the local defects and general corrosion in steel rebars. For instance, it is shown that a certain percentile threshold can be applied on magnetic data to accurately detect longitudinal defects. It is also demonstrated that medium and large cracks are detected by magnetic values' absolute gradients of greater than 0.87 (μT/mm) and 0.95 (μT/mm), respectively. In addition, it is shown that the average of standard deviations calculated for a magnetic data set decreases when the degree of general corrosion increases. The findings in the first six chapters are implemented to establish the data gathering, data analysis, and interpretation approaches used in the field work described in Chapter 7. In the field work, the condition of culvert C072's reinforced concrete (RC) bridge structure (located in the north of Markham, Ontario, Canada) is inspected. The inspection, supervised by the Corporation of the City of Markham, uses PMI technology. The inspection outcomes demonstrate that the sections close to the south and north ends of the bridge display the most-severe reinforcement anomalies: roughly, maximums of 20% and 14% of the reinforcement's cross-sectional area loss are detected close to the bridging structure's south and north ends, respectively. Additionally, an area in the middle of the bridge is found to have a noticeable anomaly in the reinforcement. The results generated from the magnetic data, collected using a PMI scanner, are in good agreement with visual-investigation results and the culvert's historical information, such as the concrete's chloride content and compressive strength values, as well as information from a half-cell potential survey. Culvert C072's condition is considered moderately deteriorated and corrective actions are recommended.

Mathematics in Computational Science and Engineering

Mathematics in Computational Science and Engineering
Title Mathematics in Computational Science and Engineering PDF eBook
Author Ramakant Bhardwaj
Publisher John Wiley & Sons
Pages 448
Release 2022-05-11
Genre Mathematics
ISBN 1119777534

Download Mathematics in Computational Science and Engineering Book in PDF, Epub and Kindle

MATHEMATICS IN COMPUTATIONAL SCIENCE AND ENGINEERING This groundbreaking new volume, written by industry experts, is a must-have for engineers, scientists, and students across all engineering disciplines working in mathematics and computational science who want to stay abreast with the most current and provocative new trends in the industry. Applied science and engineering is the application of fundamental concepts and knowledge to design, build and maintain a product or a process, which provides a solution to a problem and fulfills a need. This book contains advanced topics in computational techniques across all the major engineering disciplines for undergraduate, postgraduate, doctoral and postdoctoral students. This will also be found useful for professionals in an industrial setting. It covers the most recent trends and issues in computational techniques and methodologies for applied sciences and engineering, production planning, and manufacturing systems. More importantly, it explores the application of computational techniques and simulations through mathematics in the field of engineering and the sciences. Whether for the veteran engineer, scientist, student, or other industry professional, this volume is a must-have for any library. Useful across all engineering disciplines, it is a multifactional tool that can be put to use immediately in practical applications. This groundbreaking new volume: Includes detailed theory with illustrations Uses an algorithmic approach for a unique learning experience Presents a brief summary consisting of concepts and formulae Is pedagogically designed to make learning highly effective and productive Is comprised of peer-reviewed articles written by leading scholars, researchers and professors AUDIENCE: Engineers, scientists, students, researchers, and other professionals working in the field of computational science and mathematics across multiple disciplines

Condition Assessment of Concrete Elements Through Two Nondestructive Ultrasonic Techniques

Condition Assessment of Concrete Elements Through Two Nondestructive Ultrasonic Techniques
Title Condition Assessment of Concrete Elements Through Two Nondestructive Ultrasonic Techniques PDF eBook
Author María José Rodríguez Roblero
Publisher
Pages 176
Release 2017
Genre Nondestructive testing
ISBN

Download Condition Assessment of Concrete Elements Through Two Nondestructive Ultrasonic Techniques Book in PDF, Epub and Kindle

Reinforced concrete is one of the materials most used in civil infrastructure, and the expected service life is generally for several decades. However, as any other material, concrete performance is affected by environmental conditions, the normal use of the structure, ageing and extreme load events. All of these factors affect the elements performance and can induce damage. Since all infrastructure components deteriorate over time, it is needed to assess their actual condition. Moreover, to implement adequate corrective measures it is needed to first detect damage and quantify its extent. There are different methods that may be used to inspect concrete elements, and the selection of the adequate technique depends on the property of interest and the available resources. Among the available inspection methods, the nondestructive techniques (NDT) are those used to detect defects, to estimate the material properties or to assess the integrity of components that do not affect the elements under evaluation. Every inspection technique has advantages and disadvantages; and consequently, the current trend is to use a combination of methods. Even though several nondestructive methods are commercially available, currently there is no comprehensive method to evaluate concrete columns. Taking in consideration these aspects, the main objective of this research was to develop a new nondestructive methodology and testing device that would allow inspecting concrete columns in a fast and reliable manner, without affecting their future performance. The proposed methodology relies on ultrasonic tests. The condition evaluation is based on measurements of wave velocity and wave attenuation because it is known that the attenuation is more sensitive to damage than the velocity. However, wave attenuation is generally not used in site evaluations because is very difficult to ensure consistent measurements in the field. To overcome this limitation, a new ultrasonic testing device was developed and tested. To verify the applicability of the methodology, reinforced and unreinforced concrete samples were tested in the laboratory, and a sample of in-service reinforced concrete columns was also evaluated. The main contributions of the research presented in this thesis are: The construction of a new ultrasonic field testing device to test structural elements with circular cross section. The evaluation of a new methodology to evaluate concrete elements based on statistical indexes computed from wave velocity and wave attenuation by testing a sample of in-service columns. The new methodology allows detecting damage at earlier stages which would allow implementing opportune corrective measures. The proposal and evaluation of an alternative testing procedure to evaluate freeze/thaw damage in concrete specimens based on wave attenuation measurements. The appraisal of a new procedure to monitor progressive damage in concrete elements using surface wave measurements. The evaluation of alternative signal processing techniques of the signals obtained from the surface wave testing to facilitate the analysis of the results.

Non-Destructive Evaluation of Reinforced Concrete Structures: Deterioration Processes and Standard Test Methods

Non-Destructive Evaluation of Reinforced Concrete Structures: Deterioration Processes and Standard Test Methods
Title Non-Destructive Evaluation of Reinforced Concrete Structures: Deterioration Processes and Standard Test Methods PDF eBook
Author Christiane Maierhofer
Publisher Woodhead Publishing
Pages 266
Release 2010-06
Genre Technology & Engineering
ISBN 9780081014639

Download Non-Destructive Evaluation of Reinforced Concrete Structures: Deterioration Processes and Standard Test Methods Book in PDF, Epub and Kindle

This authoritative book provides a comprehensive review of the highly important subject of non-destructive evaluation of reinforced concrete structures. Engineers have a range of sophisticated techniques at their disposal to assess the condition of reinforced concrete structures that do not cause material damage and which usually enable the structure to be used while the surveys are carried out. Non-destructive evaluation of the infrastructure also plays a key role in calculating and prioritising where money should be spent on repair or replacement. Providing details of related techniques and case studies, this book offers an overview of how to plan and implement the NDT of reinforced concrete structures.

Non-Destructive Evaluation of Corrosion and Corrosion-assisted Cracking

Non-Destructive Evaluation of Corrosion and Corrosion-assisted Cracking
Title Non-Destructive Evaluation of Corrosion and Corrosion-assisted Cracking PDF eBook
Author Raman Singh
Publisher John Wiley & Sons
Pages 448
Release 2019-04-09
Genre Technology & Engineering
ISBN 1118350057

Download Non-Destructive Evaluation of Corrosion and Corrosion-assisted Cracking Book in PDF, Epub and Kindle

A comprehensive text to the non-destructive evaluation of degradation of materials due to environment that takes an interdisciplinary approach Non-Destructive Evaluation of Corrosion and Corrosion-assisted Cracking is an important resource that covers the critical interdisciplinary topic of non-destructive evaluation of degradation of materials due to environment. The authors—noted experts in the field—offer an overview of the wide-variety of approaches to non-destructive evaluation and various types of corrosion. The text is filled with instructive case studies from a range of industries including aerospace, energy, defense, and processing. The authors review the most common non-destructive evaluation techniques that are applied in both research and industry in order to evaluate the properties and more importantly degradation of materials components or systems without causing damage. Ultrasonic, radiographic, thermographic, electromagnetic, and optical are some of the methods explored in the book. This important text: Offers a groundbreaking interdisciplinary approach to of non-destructive evaluation of corrosion and corrosion-assisted cracking Discusses techniques for non-destructive evaluation and various types of corrosion Includes information on the application of a variety of techniques as well as specific case studies Contains information targeting industries such as aerospace, energy, processing Presents information from leading researchers and technologists in both non-destructive evaluation and corrosion Written for life assessment and maintenance personnel involved in quality control, failure analysis, and R&D, Non-Destructive Evaluation of Corrosion and Corrosion-assisted Cracking is an essential interdisciplinary guide to the topic.