Non-Convex Multi-Objective Optimization
Title | Non-Convex Multi-Objective Optimization PDF eBook |
Author | Panos M. Pardalos |
Publisher | Springer |
Pages | 196 |
Release | 2017-07-27 |
Genre | Mathematics |
ISBN | 3319610074 |
Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.
Optimization on Low Rank Nonconvex Structures
Title | Optimization on Low Rank Nonconvex Structures PDF eBook |
Author | Hiroshi Konno |
Publisher | Springer Science & Business Media |
Pages | 462 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461540984 |
Global optimization is one of the fastest developing fields in mathematical optimization. In fact, an increasing number of remarkably efficient deterministic algorithms have been proposed in the last ten years for solving several classes of large scale specially structured problems encountered in such areas as chemical engineering, financial engineering, location and network optimization, production and inventory control, engineering design, computational geometry, and multi-objective and multi-level optimization. These new developments motivated the authors to write a new book devoted to global optimization problems with special structures. Most of these problems, though highly nonconvex, can be characterized by the property that they reduce to convex minimization problems when some of the variables are fixed. A number of recently developed algorithms have been proved surprisingly efficient for handling typical classes of problems exhibiting such structures, namely low rank nonconvex structures. Audience: The book will serve as a fundamental reference book for all those who are interested in mathematical optimization.
Multi-Objective Optimization using Evolutionary Algorithms
Title | Multi-Objective Optimization using Evolutionary Algorithms PDF eBook |
Author | Kalyanmoy Deb |
Publisher | John Wiley & Sons |
Pages | 540 |
Release | 2001-07-05 |
Genre | Mathematics |
ISBN | 9780471873396 |
Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
Non-convex Optimization for Machine Learning
Title | Non-convex Optimization for Machine Learning PDF eBook |
Author | Prateek Jain |
Publisher | Foundations and Trends in Machine Learning |
Pages | 218 |
Release | 2017-12-04 |
Genre | Machine learning |
ISBN | 9781680833683 |
Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equips the reader with the tools and techniques needed to apply and analyze simple but powerful procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. The monograph initiates the discussion with entire chapters devoted to presenting a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. The monograph concludes with a look at four interesting applications in the areas of machine learning and signal processing, and exploring how the non-convex optimization techniques introduced earlier can be used to solve these problems. The monograph also contains, for each of the topics discussed, exercises and figures designed to engage the reader, as well as extensive bibliographic notes pointing towards classical works and recent advances. Non-convex Optimization for Machine Learning can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics.
Convex Optimization
Title | Convex Optimization PDF eBook |
Author | Stephen P. Boyd |
Publisher | Cambridge University Press |
Pages | 744 |
Release | 2004-03-08 |
Genre | Business & Economics |
ISBN | 9780521833783 |
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Algorithms for Convex Optimization
Title | Algorithms for Convex Optimization PDF eBook |
Author | Nisheeth K. Vishnoi |
Publisher | Cambridge University Press |
Pages | 314 |
Release | 2021-10-07 |
Genre | Computers |
ISBN | 1108633994 |
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Optimization
Title | Optimization PDF eBook |
Author | Rajesh Kumar Arora |
Publisher | CRC Press |
Pages | 454 |
Release | 2015-05-06 |
Genre | Business & Economics |
ISBN | 149872115X |
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co