Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms
Title Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms PDF eBook
Author Michel Courtieu
Publisher Springer
Pages 202
Release 2003-12-09
Genre Mathematics
ISBN 3540451781

Download Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms Book in PDF, Epub and Kindle

This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.

Non-Archimedean L-Functions

Non-Archimedean L-Functions
Title Non-Archimedean L-Functions PDF eBook
Author Alexei A. Panchishkin
Publisher Springer
Pages 167
Release 2013-11-11
Genre Mathematics
ISBN 3662215411

Download Non-Archimedean L-Functions Book in PDF, Epub and Kindle

1) p n=1 The set of arguments s for which ((s) is defined can be extended to all s E C,s :f:. 1, and we may regard C as the group of all continuous quasicharacters C = Hom(R~, c>

Motives

Motives
Title Motives PDF eBook
Author Uwe Jannsen
Publisher American Mathematical Soc.
Pages 696
Release 1994-02-28
Genre Mathematics
ISBN 9780821827994

Download Motives Book in PDF, Epub and Kindle

Motives were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, to play the role of the missing rational cohomology, and to provide a blueprint for proving Weil's conjectures about the zeta function of a variety over a finite field. Over the last ten years or so, researchers in various areas--Hodge theory, algebraic $K$-theory, polylogarithms, automorphic forms, $L$-functions, $ell$-adic representations, trigonometric sums, and algebraic cycles--have discovered that an enlarged (and in part conjectural) theory of ``mixed'' motives indicates and explains phenomena appearing in each area. Thus the theory holds the potential of enriching and unifying these areas. These two volumes contain the revised texts of nearly all the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991. A number of related works are also included, making for a total of forty-seven papers, from general introductions to specialized surveys to research papers.

Automorphic Forms and $L$-functions II

Automorphic Forms and $L$-functions II
Title Automorphic Forms and $L$-functions II PDF eBook
Author David Ginzburg
Publisher American Mathematical Soc.
Pages 339
Release 2009
Genre Mathematics
ISBN 0821847082

Download Automorphic Forms and $L$-functions II Book in PDF, Epub and Kindle

Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.

Non-Archimedean L-functions of Siegel and Hilbert Modular Forms

Non-Archimedean L-functions of Siegel and Hilbert Modular Forms
Title Non-Archimedean L-functions of Siegel and Hilbert Modular Forms PDF eBook
Author Alekseĭ Alekseevich Panchishkin
Publisher Springer
Pages 172
Release 1991
Genre Mathematics
ISBN

Download Non-Archimedean L-functions of Siegel and Hilbert Modular Forms Book in PDF, Epub and Kindle

Iwasawa Theory and Its Perspective, Volume 2

Iwasawa Theory and Its Perspective, Volume 2
Title Iwasawa Theory and Its Perspective, Volume 2 PDF eBook
Author Tadashi Ochiai
Publisher American Mathematical Society
Pages 228
Release 2024-04-25
Genre Mathematics
ISBN 1470456737

Download Iwasawa Theory and Its Perspective, Volume 2 Book in PDF, Epub and Kindle

Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation is to update the classical theory for class groups, taking into account the changed point of view on Iwasawa theory. The goal of this second part of the three-part publication is to explain various aspects of the cyclotomic Iwasawa theory of $p$-adic Galois representations.

The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms
Title The 1-2-3 of Modular Forms PDF eBook
Author Jan Hendrik Bruinier
Publisher Springer Science & Business Media
Pages 273
Release 2008-02-10
Genre Mathematics
ISBN 3540741194

Download The 1-2-3 of Modular Forms Book in PDF, Epub and Kindle

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.