Non-Archimedean Analysis

Non-Archimedean Analysis
Title Non-Archimedean Analysis PDF eBook
Author Siegfried Bosch
Publisher Springer
Pages 436
Release 2012-06-28
Genre Mathematics
ISBN 9783642522314

Download Non-Archimedean Analysis Book in PDF, Epub and Kindle

: So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (@oetqe

Nonarchimedean Functional Analysis

Nonarchimedean Functional Analysis
Title Nonarchimedean Functional Analysis PDF eBook
Author Peter Schneider
Publisher Springer Science & Business Media
Pages 159
Release 2013-03-09
Genre Mathematics
ISBN 3662047284

Download Nonarchimedean Functional Analysis Book in PDF, Epub and Kindle

This book grew out of a course which I gave during the winter term 1997/98 at the Universitat Munster. The course covered the material which here is presented in the first three chapters. The fourth more advanced chapter was added to give the reader a rather complete tour through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. There is one serious restriction, though, which seemed inevitable to me in the interest of a clear presentation. In its deeper aspects the theory depends very much on the field being spherically complete or not. To give a drastic example, if the field is not spherically complete then there exist nonzero locally convex vector spaces which do not have a single nonzero continuous linear form. Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8. I therefore allowed myself to restrict to this case whenever a conceptual clarity resulted. Although I hope that thi8 text will also be useful to the experts as a reference my own motivation for giving that course and writing this book was different. I had the reader in mind who wants to use locally convex vector spaces in the applications and needs a text to quickly gra8p this theory.

Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models

Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models
Title Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models PDF eBook
Author Andrei Y. Khrennikov
Publisher Springer Science & Business Media
Pages 386
Release 2013-03-07
Genre Science
ISBN 9400914830

Download Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models Book in PDF, Epub and Kindle

N atur non facit saltus? This book is devoted to the fundamental problem which arises contin uously in the process of the human investigation of reality: the role of a mathematical apparatus in a description of reality. We pay our main attention to the role of number systems which are used, or may be used, in this process. We shall show that the picture of reality based on the standard (since the works of Galileo and Newton) methods of real analysis is not the unique possible way of presenting reality in a human brain. There exist other pictures of reality where other num ber fields are used as basic elements of a mathematical description. In this book we try to build a p-adic picture of reality based on the fields of p-adic numbers Qp and corresponding analysis (a particular case of so called non-Archimedean analysis). However, this book must not be considered as only a book on p-adic analysis and its applications. We study a much more extended range of problems. Our philosophical and physical ideas can be realized in other mathematical frameworks which are not obliged to be based on p-adic analysis. We shall show that many problems of the description of reality with the aid of real numbers are induced by unlimited applications of the so called Archimedean axiom.

Meromorphic Functions over non-Archimedean Fields

Meromorphic Functions over non-Archimedean Fields
Title Meromorphic Functions over non-Archimedean Fields PDF eBook
Author Pei-Chu Hu
Publisher Springer Science & Business Media
Pages 308
Release 2000-09-30
Genre Mathematics
ISBN 9780792365327

Download Meromorphic Functions over non-Archimedean Fields Book in PDF, Epub and Kindle

This book introduces value distribution theory over non-Archimedean fields, starting with a survey of two Nevanlinna-type main theorems and defect relations for meromorphic functions and holomorphic curves. Secondly, it gives applications of the above theory to, e.g., abc-conjecture, Waring's problem, uniqueness theorems for meromorphic functions, and Malmquist-type theorems for differential equations over non-Archimedean fields. Next, iteration theory of rational and entire functions over non-Archimedean fields and Schmidt's subspace theorems are studied. Finally, the book suggests some new problems for further research. Audience: This work will be of interest to graduate students working in complex or diophantine approximation as well as to researchers involved in the fields of analysis, complex function theory of one or several variables, and analytic spaces.

Spectral Theory and Analytic Geometry over Non-Archimedean Fields

Spectral Theory and Analytic Geometry over Non-Archimedean Fields
Title Spectral Theory and Analytic Geometry over Non-Archimedean Fields PDF eBook
Author Vladimir G. Berkovich
Publisher American Mathematical Soc.
Pages 181
Release 2012-08-02
Genre Mathematics
ISBN 0821890204

Download Spectral Theory and Analytic Geometry over Non-Archimedean Fields Book in PDF, Epub and Kindle

The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.

Locally Convex Spaces over Non-Archimedean Valued Fields

Locally Convex Spaces over Non-Archimedean Valued Fields
Title Locally Convex Spaces over Non-Archimedean Valued Fields PDF eBook
Author C. Perez-Garcia
Publisher Cambridge University Press
Pages 486
Release 2010-01-07
Genre Mathematics
ISBN 9780521192439

Download Locally Convex Spaces over Non-Archimedean Valued Fields Book in PDF, Epub and Kindle

Non-Archimedean functional analysis, where alternative but equally valid number systems such as p-adic numbers are fundamental, is a fast-growing discipline widely used not just within pure mathematics, but also applied in other sciences, including physics, biology and chemistry. This book is the first to provide a comprehensive treatment of non-Archimedean locally convex spaces. The authors provide a clear exposition of the basic theory, together with complete proofs and new results from the latest research. A guide to the many illustrative examples provided, end-of-chapter notes and glossary of terms all make this book easily accessible to beginners at the graduate level, as well as specialists from a variety of disciplines.

Nonarchimedean and Tropical Geometry

Nonarchimedean and Tropical Geometry
Title Nonarchimedean and Tropical Geometry PDF eBook
Author Matthew Baker
Publisher Springer
Pages 534
Release 2016-08-18
Genre Mathematics
ISBN 3319309455

Download Nonarchimedean and Tropical Geometry Book in PDF, Epub and Kindle

This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.