Non-Additive Measure and Integral

Non-Additive Measure and Integral
Title Non-Additive Measure and Integral PDF eBook
Author D. Denneberg
Publisher Springer Science & Business Media
Pages 182
Release 2013-03-09
Genre Mathematics
ISBN 9401724342

Download Non-Additive Measure and Integral Book in PDF, Epub and Kindle

Non-Additive Measure and Integral is the first systematic approach to the subject. Much of the additive theory (convergence theorems, Lebesgue spaces, representation theorems) is generalized, at least for submodular measures which are characterized by having a subadditive integral. The theory is of interest for applications to economic decision theory (decisions under risk and uncertainty), to statistics (including belief functions, fuzzy measures) to cooperative game theory, artificial intelligence, insurance, etc. Non-Additive Measure and Integral collects the results of scattered and often isolated approaches to non-additive measures and their integrals which originate in pure mathematics, potential theory, statistics, game theory, economic decision theory and other fields of application. It unifies, simplifies and generalizes known results and supplements the theory with new results, thus providing a sound basis for applications and further research in this growing field of increasing interest. It also contains fundamental results of sigma-additive and finitely additive measure and integration theory and sheds new light on additive theory. Non-Additive Measure and Integral employs distribution functions and quantile functions as basis tools, thus remaining close to the familiar language of probability theory. In addition to serving as an important reference, the book can be used as a mathematics textbook for graduate courses or seminars, containing many exercises to support or supplement the text.

Non-Additive Measures

Non-Additive Measures
Title Non-Additive Measures PDF eBook
Author Vicenc Torra
Publisher Springer
Pages 207
Release 2013-10-23
Genre Technology & Engineering
ISBN 3319031554

Download Non-Additive Measures Book in PDF, Epub and Kindle

This book provides a comprehensive and timely report in the area of non-additive measures and integrals. It is based on a panel session on fuzzy measures, fuzzy integrals and aggregation operators held during the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012) in Girona, Spain, November 21-23, 2012. The book complements the MDAI 2012 proceedings book, published in Lecture Notes in Computer Science (LNCS) in 2012. The individual chapters, written by key researchers in the field, cover fundamental concepts and important definitions (e.g. the Sugeno integral, definition of entropy for non-additive measures) as well some important applications (e.g. to economics and game theory) of non-additive measures and integrals. The book addresses students, researchers and practitioners working at the forefront of their field.

An Introduction to Measure Theory

An Introduction to Measure Theory
Title An Introduction to Measure Theory PDF eBook
Author Terence Tao
Publisher American Mathematical Soc.
Pages 206
Release 2021-09-03
Genre Education
ISBN 1470466406

Download An Introduction to Measure Theory Book in PDF, Epub and Kindle

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Measure, Integral and Probability

Measure, Integral and Probability
Title Measure, Integral and Probability PDF eBook
Author Marek Capinski
Publisher Springer Science & Business Media
Pages 229
Release 2013-06-29
Genre Mathematics
ISBN 1447136314

Download Measure, Integral and Probability Book in PDF, Epub and Kindle

This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Optimization Based Data Mining: Theory and Applications

Optimization Based Data Mining: Theory and Applications
Title Optimization Based Data Mining: Theory and Applications PDF eBook
Author Yong Shi
Publisher Springer Science & Business Media
Pages 314
Release 2011-05-16
Genre Computers
ISBN 0857295047

Download Optimization Based Data Mining: Theory and Applications Book in PDF, Epub and Kindle

Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.

Theory of Random Sets

Theory of Random Sets
Title Theory of Random Sets PDF eBook
Author Ilya Molchanov
Publisher Springer Science & Business Media
Pages 508
Release 2005-05-11
Genre Mathematics
ISBN 9781852338923

Download Theory of Random Sets Book in PDF, Epub and Kindle

This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine

Information Processing and Management of Uncertainty in Knowledge-Based Systems

Information Processing and Management of Uncertainty in Knowledge-Based Systems
Title Information Processing and Management of Uncertainty in Knowledge-Based Systems PDF eBook
Author Eyke Hüllermeier
Publisher Springer Science & Business Media
Pages 786
Release 2010-06-25
Genre Computers
ISBN 3642140548

Download Information Processing and Management of Uncertainty in Knowledge-Based Systems Book in PDF, Epub and Kindle

The International Conference on Information Processing and Management of - certainty in Knowledge-Based Systems, IPMU, is organized every two years with the aim of bringing together scientists working on methods for the management of uncertainty and aggregation of information in intelligent systems. Since 1986, this conference has been providing a forum for the exchange of ideas between th theoreticians and practitioners working in these areas and related ?elds. The 13 IPMU conference took place in Dortmund, Germany, June 28–July 2, 2010. This volume contains 79 papers selected through a rigorous reviewing process. The contributions re?ect the richness of research on topics within the scope of the conference and represent several important developments, speci?cally focused on theoretical foundations and methods for information processing and management of uncertainty in knowledge-based systems. We were delighted that Melanie Mitchell (Portland State University, USA), Nihkil R. Pal (Indian Statistical Institute), Bernhard Sch ̈ olkopf (Max Planck I- titute for Biological Cybernetics, Tubing ̈ en, Germany) and Wolfgang Wahlster (German Research Center for Arti?cial Intelligence, Saarbruc ̈ ken) accepted our invitations to present keynote lectures. Jim Bezdek received the Kamp ́ede F ́ eriet Award, granted every two years on the occasion of the IPMU conference, in view of his eminent research contributions to the handling of uncertainty in clustering, data analysis and pattern recognition.