Newton Methods for Nonlinear Problems

Newton Methods for Nonlinear Problems
Title Newton Methods for Nonlinear Problems PDF eBook
Author Peter Deuflhard
Publisher Springer Science & Business Media
Pages 444
Release 2005-01-13
Genre Mathematics
ISBN 9783540210993

Download Newton Methods for Nonlinear Problems Book in PDF, Epub and Kindle

This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.

Newton-Type Methods for Optimization and Variational Problems

Newton-Type Methods for Optimization and Variational Problems
Title Newton-Type Methods for Optimization and Variational Problems PDF eBook
Author Alexey F. Izmailov
Publisher Springer
Pages 587
Release 2014-07-08
Genre Business & Economics
ISBN 3319042475

Download Newton-Type Methods for Optimization and Variational Problems Book in PDF, Epub and Kindle

This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.

Solving Nonlinear Equations with Newton's Method

Solving Nonlinear Equations with Newton's Method
Title Solving Nonlinear Equations with Newton's Method PDF eBook
Author C. T. Kelley
Publisher SIAM
Pages 117
Release 2003-01-01
Genre Mathematics
ISBN 9780898718898

Download Solving Nonlinear Equations with Newton's Method Book in PDF, Epub and Kindle

This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces
Title Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces PDF eBook
Author Michael Ulbrich
Publisher SIAM
Pages 315
Release 2011-07-28
Genre Mathematics
ISBN 1611970687

Download Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces Book in PDF, Epub and Kindle

A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.

Newton Methods

Newton Methods
Title Newton Methods PDF eBook
Author Ioannis K. Argyros
Publisher Nova Publishers
Pages 422
Release 2005
Genre Mathematics
ISBN 9781594540523

Download Newton Methods Book in PDF, Epub and Kindle

This self-contained treatment offers a contemporary and systematic development of the theory and application of Newton methods, which are undoubtedly the most effective tools for solving equations appearing in computational sciences. Its focal point resides in an exhaustive analysis of the convergence properties of several Newton variants used in connection to specific real life problems originated from astrophysics, engineering, mathematical economics and other applied areas. What distinguishes this book from others is the fact that the weak convergence conditions inaugurated here allow for a wider applicability of Newton methods; finer error bounds on the distances involved, and a more precise information on the location of the solution. These factors make this book ideal for researchers, practitioners and students.

Isaac Newton on Mathematical Certainty and Method

Isaac Newton on Mathematical Certainty and Method
Title Isaac Newton on Mathematical Certainty and Method PDF eBook
Author Niccolo Guicciardini
Publisher MIT Press
Pages 449
Release 2011-08-19
Genre Mathematics
ISBN 0262291657

Download Isaac Newton on Mathematical Certainty and Method Book in PDF, Epub and Kindle

An analysis of Newton's mathematical work, from early discoveries to mature reflections, and a discussion of Newton's views on the role and nature of mathematics. Historians of mathematics have devoted considerable attention to Isaac Newton's work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton's work that has not been tightly connected to Newton's actual practice: his philosophy of mathematics. Newton aimed to inject certainty into natural philosophy by deploying mathematical reasoning (titling his main work The Mathematical Principles of Natural Philosophy most probably to highlight a stark contrast to Descartes's Principles of Philosophy). To that end he paid concerted attention to method, particularly in relation to the issue of certainty, participating in contemporary debates on the subject and elaborating his own answers. Guicciardini shows how Newton carefully positioned himself against two giants in the “common” and “new” analysis, Descartes and Leibniz. Although his work was in many ways disconnected from the traditions of Greek geometry, Newton portrayed himself as antiquity's legitimate heir, thereby distancing himself from the moderns. Guicciardini reconstructs Newton's own method by extracting it from his concrete practice and not solely by examining his broader statements about such matters. He examines the full range of Newton's works, from his early treatises on series and fluxions to the late writings, which were produced in direct opposition to Leibniz. The complex interactions between Newton's understanding of method and his mathematical work then reveal themselves through Guicciardini's careful analysis of selected examples. Isaac Newton on Mathematical Certainty and Method uncovers what mathematics was for Newton, and what being a mathematician meant to him.

Newton Methods for Nonlinear Problems

Newton Methods for Nonlinear Problems
Title Newton Methods for Nonlinear Problems PDF eBook
Author Peter Deuflhard
Publisher Springer Science & Business Media
Pages 432
Release 2011-09-18
Genre Mathematics
ISBN 3642238998

Download Newton Methods for Nonlinear Problems Book in PDF, Epub and Kindle

This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term 'affine invariance' means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.