New Trends in Hopf Algebra Theory

New Trends in Hopf Algebra Theory
Title New Trends in Hopf Algebra Theory PDF eBook
Author Nicolás Andruskiewitsch
Publisher American Mathematical Soc.
Pages 376
Release 2000
Genre Mathematics
ISBN 0821821261

Download New Trends in Hopf Algebra Theory Book in PDF, Epub and Kindle

This volume presents the proceedings from the Colloquium on Quantum Groups and Hopf Algebras held in Cordoba (Argentina) in 1999. The meeting brought together researchers who discussed recent developments in Hopf algebras, one of the most important being the influence of quantum groups. Articles offer introductory expositions and surveys on topics of current interest that, to date, have not been available in the current literature. Surveys are included on characteristics of Hopf algebras and their generalizations, biFrobenius algebras, braided Hopf algebras, inner actions and Galois theory, face algebras, and infinitesimal Hopf algebras. The following topics are also covered: existence of integrals, classification of semisimple and pointed Hopf algebras, *-Hopf algebras, dendriform algebras, etc. Non-classical topics are also included, reflecting its applications both inside and outside the theory.

New Trends in Hopf Algebra Theory

New Trends in Hopf Algebra Theory
Title New Trends in Hopf Algebra Theory PDF eBook
Author Nicolás Andruskiewitsch
Publisher American Mathematical Soc.
Pages 378
Release
Genre Mathematics
ISBN 9780821856031

Download New Trends in Hopf Algebra Theory Book in PDF, Epub and Kindle

This volume presents the proceedings from the Colloquium on Quantum Groups and Hopf Algebras held in Cordoba (Argentina) in 1999. The meeting brought together researchers who discussed recent developments in Hopf algebras, one of the most important being the influence of quantum groups. Articles offer introductory expositions and surveys on topics of current interest that, to date, have not been available in the current literature. Surveys are included on characteristics of Hopf algebras and their generalizations, biFrobenius algebras, braided Hopf algebras, inner actions and Galois theory, face algebras, and infinitesimal Hopf algebras. The following topics are also covered: existence of integrals, classification of semisimple and pointed Hopf algebras, *-Hopf algebras, dendriform algebras, etc. Non-classical topics are also included, reflecting its applications both inside and outside the theory.

Hopf Algebras

Hopf Algebras
Title Hopf Algebras PDF eBook
Author David E Radford
Publisher World Scientific
Pages 584
Release 2011-12-28
Genre Mathematics
ISBN 9814405108

Download Hopf Algebras Book in PDF, Epub and Kindle

The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.

Galois and Cleft Monoidal Cowreaths. Applications

Galois and Cleft Monoidal Cowreaths. Applications
Title Galois and Cleft Monoidal Cowreaths. Applications PDF eBook
Author D. Bulacu
Publisher American Mathematical Soc.
Pages 133
Release 2021-07-21
Genre Education
ISBN 1470447525

Download Galois and Cleft Monoidal Cowreaths. Applications Book in PDF, Epub and Kindle

We introduce (pre-)Galois and cleft monoidal cowreaths. Generalizing a result of Schneider, to any pre-Galois cowreath we associate a pair of adjoint functors L R and give necessary and sufficient conditions for the adjunction to be an equivalence of categories. Inspired by the work of Doi we also give sufficient conditions for L R to be an equivalence, and consequently conditions under which a fundamental structure theorem for entwined modules over monoidal cowreaths holds. We show that a cowreath is cleft if and only if it is Galois and has the normal basis property; this generalizes a result concerning Hopf cleft extensions due to Doi and Takeuchi. Furthermore, we show that the cleft cowreaths are in a one to one correspondence with what we call cleft wreaths. The latter are wreaths in the sense of Lack and Street, equipped with two additional morphisms satisfying some compatibility relations. Note that, in general, the algebras defined by cleft wreaths cannot be identified to (generalized) crossed product algebras, as they were defined by Doi and Takeuchi, and Blattner, Cohen and Montgomery. This becomes more transparent when we apply our theory to cowreaths defined by actions and coactions of a quasi-Hopf algebra, monoidal entwining structures and ν-Doi-Hopf structures, respectively. In particular, we obtain that some constructions of Brzezi´nski and Schauenburg produce examples of cleft wreaths, and therefore of cleft cowreaths, too.

Quantum Lie Theory

Quantum Lie Theory
Title Quantum Lie Theory PDF eBook
Author Vladislav Kharchenko
Publisher Springer
Pages 312
Release 2015-12-24
Genre Mathematics
ISBN 3319227041

Download Quantum Lie Theory Book in PDF, Epub and Kindle

This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin Lie algebras; and Shestakov--Umirbaev operations for the Lie theory of nonassociative products. Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.

Handbook of Algebra

Handbook of Algebra
Title Handbook of Algebra PDF eBook
Author M. Hazewinkel
Publisher Elsevier
Pages 543
Release 2006-05-30
Genre Mathematics
ISBN 0080462499

Download Handbook of Algebra Book in PDF, Epub and Kindle

Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source for information- Provides in-depth coverage of new topics in algebra- Includes references to relevant articles, books and lecture notes

Hopf Algebras

Hopf Algebras
Title Hopf Algebras PDF eBook
Author Jeffrey Bergen
Publisher CRC Press
Pages 282
Release 2004-01-28
Genre Mathematics
ISBN 9780824755669

Download Hopf Algebras Book in PDF, Epub and Kindle

This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic Morita invariant. It uses the newly introduced theory of bi-Frobenius algebras to investigate a notion of group-like algebras and summarizes results on the classification of Hopf algebras of dimension pq. It also explores pre-Lie, dendriform, and Nichols algebras and discusses support cones for infinitesimal group schemes.