New Directions on Model Predictive Control
Title | New Directions on Model Predictive Control PDF eBook |
Author | Jinfeng Liu |
Publisher | MDPI |
Pages | 231 |
Release | 2019-01-16 |
Genre | Technology & Engineering |
ISBN | 303897420X |
This book is a printed edition of the Special Issue "New Directions on Model Predictive Control" that was published in Mathematics
Assessment and Future Directions of Nonlinear Model Predictive Control
Title | Assessment and Future Directions of Nonlinear Model Predictive Control PDF eBook |
Author | Rolf Findeisen |
Publisher | Springer |
Pages | 644 |
Release | 2007-09-08 |
Genre | Technology & Engineering |
ISBN | 3540726993 |
Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.
New Directions in Bioprocess Modeling and Control
Title | New Directions in Bioprocess Modeling and Control PDF eBook |
Author | Michael A. Boudreau |
Publisher | ISA |
Pages | 356 |
Release | 2007 |
Genre | Science |
ISBN | 9781556179051 |
Models offer benefits even before they are put on line. Based on years of experience, the authors reveal in New Directions in Bioprocess Modeling and Control that significant improvements can result from the process knowledge and insight that are gained when building experimental and first-principle models for process monitoring and control. Doing modeling in the process development and early commercialization phases is advantageous because it increases process efficiency and provides ongoing opportunities for improving process control. This technology is important for maximizing benefits from analyzers and control tool investments. If you are a process design, quality control, information systems, or automation engineer in the biopharmaceutical, brewing, or bio-fuel industry, this handy resource will help you define, develop, and apply a virtual plant, model predictive control, first-principle models, neural networks, and multivariate statistical process control. The synergistic knowledge discovery on bench top or pilot plant scale can be ported to industrial scale processes. This learning process is consistent with the intent in the Process Analyzer and Process Control Tools sections of the FDA_s Guidance for Industry PAT _ A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance. It states in the Process Analyzer section of the FDA_s guidance: _For certain applications, sensor-based measurements can provide a useful process signature that may be related to the underlying process steps or transformations. Based on the level of process understanding these signatures may also be useful for the process monitoring, control, and end point determination when these patterns or signatures relate to product and process quality._
Model Predictive Control
Title | Model Predictive Control PDF eBook |
Author | Eduardo F. Camacho |
Publisher | Springer Science & Business Media |
Pages | 405 |
Release | 2013-01-10 |
Genre | Technology & Engineering |
ISBN | 0857293982 |
The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.
Nonlinear Model Predictive Control
Title | Nonlinear Model Predictive Control PDF eBook |
Author | Lalo Magni |
Publisher | Springer Science & Business Media |
Pages | 562 |
Release | 2009-05-25 |
Genre | Technology & Engineering |
ISBN | 3642010938 |
Over the past few years significant progress has been achieved in the field of nonlinear model predictive control (NMPC), also referred to as receding horizon control or moving horizon control. More than 250 papers have been published in 2006 in ISI Journals. With this book we want to bring together the contributions of a diverse group of internationally well recognized researchers and industrial practitioners, to critically assess the current status of the NMPC field and to discuss future directions and needs. The book consists of selected papers presented at the International Workshop on Assessment an Future Directions of Nonlinear Model Predictive Control that took place from September 5 to 9, 2008, in Pavia, Italy.
Economic Model Predictive Control
Title | Economic Model Predictive Control PDF eBook |
Author | Matthew Ellis |
Publisher | Springer |
Pages | 311 |
Release | 2016-07-27 |
Genre | Technology & Engineering |
ISBN | 331941108X |
This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes.In addition to being mathematically rigorous, these methods accommodate key practical issues, for example, direct optimization of process economics, time-varying economic cost functions and computational efficiency. Numerous comments and remarks providing fundamental understanding of the merging of process economics and feedback control into a single framework are included. A control engineer can easily tailor the many detailed examples of industrial relevance given within the text to a specific application. The authors present a rich collection of new research topics and references to significant recent work making Economic Model Predictive Control an important source of information and inspiration for academics and graduate students researching the area and for process engineers interested in applying its ideas.
New Directions in Neural Networks
Title | New Directions in Neural Networks PDF eBook |
Author | Bruno Apolloni |
Publisher | IOS Press |
Pages | 276 |
Release | 2009 |
Genre | Computers |
ISBN | 1586039849 |
A collection of selected papers from the 18th WIRN workshop, the annual meeting of the Italian Neural Networks Society (SIREN). It is divided in two general subjects, 'models' and 'applications' and two specific ones, 'economy and complexity' and 'remote sensing image processing'.