New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn
Title | New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn PDF eBook |
Author | Antonio Alarcón |
Publisher | American Mathematical Soc. |
Pages | 90 |
Release | 2020-05-13 |
Genre | Education |
ISBN | 1470441616 |
All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in Rn with any given conformal structure, complete non-orientable minimal surfaces in Rn with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of CPn−1 in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of Rn.
New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n}
Title | New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Mathbb{R}^{n} PDF eBook |
Author | Antonio Alarcón |
Publisher | |
Pages | 77 |
Release | 2020 |
Genre | Electronic books |
ISBN | 9781470458126 |
The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to \mathbb{R}^n is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable co.
Minimal Surfaces from a Complex Analytic Viewpoint
Title | Minimal Surfaces from a Complex Analytic Viewpoint PDF eBook |
Author | Antonio Alarcón |
Publisher | Springer Nature |
Pages | 430 |
Release | 2021-03-10 |
Genre | Mathematics |
ISBN | 3030690563 |
This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.
Weakly Modular Graphs and Nonpositive Curvature
Title | Weakly Modular Graphs and Nonpositive Curvature PDF eBook |
Author | Jérémie Chalopin |
Publisher | American Mathematical Soc. |
Pages | 85 |
Release | 2021-06-18 |
Genre | Education |
ISBN | 1470443627 |
This article investigates structural, geometrical, and topological characteri-zations and properties of weakly modular graphs and of cell complexes derived from them. The unifying themes of our investigation are various “nonpositive cur-vature” and “local-to-global” properties and characterizations of weakly modular graphs and their subclasses. Weakly modular graphs have been introduced as a far-reaching common generalization of median graphs (and more generally, of mod-ular and orientable modular graphs), Helly graphs, bridged graphs, and dual polar graphs occurring under different disguises (1–skeletons, collinearity graphs, covering graphs, domains, etc.) in several seemingly-unrelated fields of mathematics: * Metric graph theory * Geometric group theory * Incidence geometries and buildings * Theoretical computer science and combinatorial optimization We give a local-to-global characterization of weakly modular graphs and their sub-classes in terms of simple connectedness of associated triangle-square complexes and specific local combinatorial conditions. In particular, we revisit characterizations of dual polar graphs by Cameron and by Brouwer-Cohen. We also show that (disk-)Helly graphs are precisely the clique-Helly graphs with simply connected clique complexes. With l1–embeddable weakly modular and sweakly modular graphs we associate high-dimensional cell complexes, having several strong topological and geometrical properties (contractibility and the CAT(0) property). Their cells have a specific structure: they are basis polyhedra of even –matroids in the first case and orthoscheme complexes of gated dual polar subgraphs in the second case. We resolve some open problems concerning subclasses of weakly modular graphs: we prove a Brady-McCammond conjecture about CAT(0) metric on the orthoscheme.
Conformal Symmetry Breaking Differential Operators on Differential Forms
Title | Conformal Symmetry Breaking Differential Operators on Differential Forms PDF eBook |
Author | Matthias Fischmann |
Publisher | American Mathematical Soc. |
Pages | 112 |
Release | 2021-06-18 |
Genre | Education |
ISBN | 1470443244 |
We study conformal symmetry breaking differential operators which map dif-ferential forms on Rn to differential forms on a codimension one subspace Rn−1. These operators are equivariant with respect to the conformal Lie algebra of the subspace Rn−1. They correspond to homomorphisms of generalized Verma mod-ules for so(n, 1) into generalized Verma modules for so(n+1, 1) both being induced from fundamental form representations of a parabolic subalgebra. We apply the F -method to derive explicit formulas for such homomorphisms. In particular, we find explicit formulas for the generators of the intertwining operators of the re-lated branching problems restricting generalized Verma modules for so(n +1, 1) to so(n, 1). As consequences, we derive closed formulas for all conformal symmetry breaking differential operators in terms of the first-order operators d, δ, d¯ and δ¯ and certain hypergeometric polynomials. A dominant role in these studies is played by two infinite sequences of symmetry breaking differential operators which depend on a complex parameter λ. Their values at special values of λ appear as factors in two systems of factorization identities which involve the Branson-Gover opera- tors of the Euclidean metrics on Rn and Rn−1 and the operators d, δ, d¯ and δ¯ as factors, respectively. Moreover, they naturally recover the gauge companion and Q-curvature operators of the Euclidean metric on the subspace Rn−1, respectively.
The 2D Compressible Euler Equations in Bounded Impermeable Domains with Corners
Title | The 2D Compressible Euler Equations in Bounded Impermeable Domains with Corners PDF eBook |
Author | Paul Godin |
Publisher | American Mathematical Soc. |
Pages | 72 |
Release | 2021-06-21 |
Genre | Education |
ISBN | 1470444216 |
We study 2D compressible Euler flows in bounded impermeable domains whose boundary is smooth except for corners. We assume that the angles of the corners are small enough. Then we obtain local (in time) existence of solutions which keep the L2 Sobolev regularity of their Cauchy data, provided the external forces are sufficiently regular and suitable compatibility conditions are satisfied. Such a result is well known when there is no corner. Our proof relies on the study of associated linear problems. We also show that our results are rather sharp: we construct counterexamples in which the smallness condition on the angles is not fulfilled and which display a loss of L2 Sobolev regularity with respect to the Cauchy data and the external forces.
Global Smooth Solutions for the Inviscid SQG Equation
Title | Global Smooth Solutions for the Inviscid SQG Equation PDF eBook |
Author | Angel Castro |
Publisher | American Mathematical Soc. |
Pages | 89 |
Release | 2020-09-28 |
Genre | Mathematics |
ISBN | 1470442140 |
In this paper, the authors show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation.