Neuro Fuzzy Hybrid Models for Classification in Medical Diagnosis

Neuro Fuzzy Hybrid Models for Classification in Medical Diagnosis
Title Neuro Fuzzy Hybrid Models for Classification in Medical Diagnosis PDF eBook
Author Patricia Melin
Publisher Springer Nature
Pages 109
Release 2020-10-27
Genre Technology & Engineering
ISBN 3030604810

Download Neuro Fuzzy Hybrid Models for Classification in Medical Diagnosis Book in PDF, Epub and Kindle

This book is focused on the use of intelligent techniques, such as fuzzy logic, neural networks and bio-inspired algorithms, and their application in medical diagnosis. The main idea is that the proposed method may be able to adapt to medical diagnosis problems in different possible areas of the medicine and help to have an improvement in diagnosis accuracy considering a clinical monitoring of 24 hours or more of the patient. In this book, tests were made with different architectures proposed in the different modules of the proposed model. First, it was possible to obtain the architecture of the fuzzy classifiers for the level of blood pressure and for the pressure load, and these were optimized with the different bio-inspired algorithms (Genetic Algorithm and Chicken Swarm Optimization). Secondly, we tested with a local database of 300 patients and good results were obtained. It is worth mentioning that this book is an important part of the proposed general model; for this reason, we consider that these modules have a good performance in a particular way, but it is advisable to perform more tests once the general model is completed.

Nature-inspired Optimization of Type-2 Fuzzy Neural Hybrid Models for Classification in Medical Diagnosis

Nature-inspired Optimization of Type-2 Fuzzy Neural Hybrid Models for Classification in Medical Diagnosis
Title Nature-inspired Optimization of Type-2 Fuzzy Neural Hybrid Models for Classification in Medical Diagnosis PDF eBook
Author Patricia Melin
Publisher Springer Nature
Pages 134
Release 2021-08-06
Genre Technology & Engineering
ISBN 3030822192

Download Nature-inspired Optimization of Type-2 Fuzzy Neural Hybrid Models for Classification in Medical Diagnosis Book in PDF, Epub and Kindle

This book describes the utilization of different soft computing techniques and their optimization for providing an accurate and efficient medical diagnosis. The proposed method provides a precise and timely diagnosis of the risk that a person has to develop a particular disease, but it can be adaptable to provide the diagnosis of different diseases. This book reflects the experimentation that was carried out, based on the different optimizations using bio-inspired algorithms (such as bird swarm algorithm, flower pollination algorithms, and others). In particular, the optimizations were carried out to design the fuzzy classifiers of the nocturnal blood pressure profile and heart rate level. In addition, to obtain the architecture that provides the best result, the neurons and the number of neurons per layers of the artificial neural networks used in the model are optimized. Furthermore, different tests were carried out with the complete optimized model. Another work that is presented in this book is the dynamic parameter adaptation of the bird swarm algorithm using fuzzy inference systems, with the aim of improving its performance. For this, different experiments are carried out, where mathematical functions and a monolithic neural network are optimized to compare the results obtained with the original algorithm. The book will be of interest for graduate students of engineering and medicine, as well as researchers and professors aiming at proposing and developing new intelligent models for medical diagnosis. In addition, it also will be of interest for people working on metaheuristic algorithms and their applications on medicine.

Nature-Inspired Design of Hybrid Intelligent Systems

Nature-Inspired Design of Hybrid Intelligent Systems
Title Nature-Inspired Design of Hybrid Intelligent Systems PDF eBook
Author Patricia Melin
Publisher Springer
Pages 817
Release 2016-12-08
Genre Technology & Engineering
ISBN 331947054X

Download Nature-Inspired Design of Hybrid Intelligent Systems Book in PDF, Epub and Kindle

This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.

New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics

New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics
Title New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics PDF eBook
Author Oscar Castillo
Publisher Springer Nature
Pages 471
Release 2022-09-30
Genre Technology & Engineering
ISBN 3031082664

Download New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics Book in PDF, Epub and Kindle

In this book, recent developments on fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, are presented. In addition, the above-mentioned methods are applied to areas such as, intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. The book contains a collection of papers focused on hybrid intelligent systems based on soft computing techniques. There are some papers with the main theme of type-1 and type-2 fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications. There also some papers that offer theoretical concepts and applications of meta-heuristics in different areas. Another group of papers describe diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical problems. There are also some papers that present theory and practice of neural networks in different areas of application. In addition, there are papers that present theory and practice of optimization and evolutionary algorithms in different areas of application. Finally, there are some papers describing applications of fuzzy logic, neural networks and meta-heuristics in pattern recognition and classification problems.

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning
Title Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning PDF eBook
Author Rani, Geeta
Publisher IGI Global
Pages 586
Release 2020-10-16
Genre Medical
ISBN 1799827437

Download Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning Book in PDF, Epub and Kindle

By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.

New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension

New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension
Title New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension PDF eBook
Author Patricia Melin
Publisher Springer
Pages 92
Release 2017-07-04
Genre Technology & Engineering
ISBN 3319611496

Download New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension Book in PDF, Epub and Kindle

In this book, a new approach for diagnosis and risk evaluation of ar-terial hypertension is introduced. The new approach was implement-ed as a hybrid intelligent system combining modular neural net-works and fuzzy systems. The different responses of the hybrid system are combined using fuzzy logic. Finally, two genetic algo-rithms are used to perform the optimization of the modular neural networks parameters and fuzzy inference system parameters. The experimental results obtained using the proposed method on real pa-tient data show that when the optimization is used, the results can be better than without optimization. This book is intended to be a refer-ence for scientists and physicians interested in applying soft compu-ting techniques, such as neural networks, fuzzy logic and genetic algorithms, in medical diagnosis, but also in general to classification and pattern recognition and similar problems.

Advanced Classification Techniques for Healthcare Analysis

Advanced Classification Techniques for Healthcare Analysis
Title Advanced Classification Techniques for Healthcare Analysis PDF eBook
Author Chakraborty, Chinmay
Publisher IGI Global
Pages 448
Release 2019-02-22
Genre Medical
ISBN 1522577971

Download Advanced Classification Techniques for Healthcare Analysis Book in PDF, Epub and Kindle

Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.