Neural Networks in Finance
Title | Neural Networks in Finance PDF eBook |
Author | Paul D. McNelis |
Publisher | Academic Press |
Pages | 262 |
Release | 2005-01-05 |
Genre | Business & Economics |
ISBN | 0124859674 |
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Wavelet Neural Networks
Title | Wavelet Neural Networks PDF eBook |
Author | Antonios K. Alexandridis |
Publisher | John Wiley & Sons |
Pages | 262 |
Release | 2014-04-24 |
Genre | Mathematics |
ISBN | 1118596293 |
A step-by-step introduction to modeling, training, and forecasting using wavelet networks Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification presents the statistical model identification framework that is needed to successfully apply wavelet networks as well as extensive comparisons of alternate methods. Providing a concise and rigorous treatment for constructing optimal wavelet networks, the book links mathematical aspects of wavelet network construction to statistical modeling and forecasting applications in areas such as finance, chaos, and classification. The authors ensure that readers obtain a complete understanding of model identification by providing in-depth coverage of both model selection and variable significance testing. Featuring an accessible approach with introductory coverage of the basic principles of wavelet analysis, Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification also includes: • Methods that can be easily implemented or adapted by researchers, academics, and professionals in identification and modeling for complex nonlinear systems and artificial intelligence • Multiple examples and thoroughly explained procedures with numerous applications ranging from financial modeling and financial engineering, time series prediction and construction of confidence and prediction intervals, and classification and chaotic time series prediction • An extensive introduction to neural networks that begins with regression models and builds to more complex frameworks • Coverage of both the variable selection algorithm and the model selection algorithm for wavelet networks in addition to methods for constructing confidence and prediction intervals Ideal as a textbook for MBA and graduate-level courses in applied neural network modeling, artificial intelligence, advanced data analysis, time series, and forecasting in financial engineering, the book is also useful as a supplement for courses in informatics, identification and modeling for complex nonlinear systems, and computational finance. In addition, the book serves as a valuable reference for researchers and practitioners in the fields of mathematical modeling, engineering, artificial intelligence, decision science, neural networks, and finance and economics.
Machine Learning for Financial Engineering
Title | Machine Learning for Financial Engineering PDF eBook |
Author | György Ottucsák |
Publisher | World Scientific |
Pages | 261 |
Release | 2012 |
Genre | Business & Economics |
ISBN | 1848168136 |
Preface v 1 On the History of the Growth-Optimal Portfolio M.M. Christensen 1 2 Empirical Log-Optimal Portfolio Selections: A Survey L. Györfi Gy. Ottucsáak A. Urbán 81 3 Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Györfi H. Walk 119 4 Growth-Optimal Portfoho Selection with Short Selling and Leverage M. Horváth A. Urbán 153 5 Nonparametric Sequential Prediction of Stationary Time Series L. Györfi Gy. Ottucsák 179 6 Empirical Pricing American Put Options L. Györfi A. Telcs 227 Index 249.
Artificial Neural Networks in Finance and Manufacturing
Title | Artificial Neural Networks in Finance and Manufacturing PDF eBook |
Author | Kamruzzaman, Joarder |
Publisher | IGI Global |
Pages | 299 |
Release | 2006-03-31 |
Genre | Computers |
ISBN | 1591406722 |
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications
Title | Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications PDF eBook |
Author | Zhang, Ming |
Publisher | IGI Global |
Pages | 660 |
Release | 2010-02-28 |
Genre | Computers |
ISBN | 1615207120 |
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations
Title | Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations PDF eBook |
Author | Snehashish Chakraverty |
Publisher | World Scientific |
Pages | 192 |
Release | 2021-01-26 |
Genre | Computers |
ISBN | 9811230226 |
The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Handbook of Financial Engineering
Title | Handbook of Financial Engineering PDF eBook |
Author | Constantin Zopounidis |
Publisher | Springer Science & Business Media |
Pages | 494 |
Release | 2010-07-25 |
Genre | Business & Economics |
ISBN | 0387766820 |
This comprehensive handbook discusses the most recent advances within the field of financial engineering, focusing not only on the description of the existing areas in financial engineering research, but also on the new methodologies that have been developed for modeling and addressing financial engineering problems. The book is intended for financial engineers, researchers, applied mathematicians, and graduate students interested in real-world applications to financial engineering.