Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems
Title | Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems PDF eBook |
Author | Radu-Emil Precup |
Publisher | Butterworth-Heinemann |
Pages | 148 |
Release | 2019-04-23 |
Genre | Technology & Engineering |
ISBN | 0128163585 |
Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems explains fuzzy control in servo systems in a way that doesn't require any solid mathematical prerequisite. Analysis and design methodologies are covered, along with specific applications to servo systems and representative case studies. The theoretical approaches presented throughout the book are validated by the illustration of digital simulation and real-time experimental results. This book is a great resource for a wide variety of readers, including graduate students, engineers (designers, practitioners and researchers), and everyone who faces challenging control problems.
Data-Driven Model-Free Controllers
Title | Data-Driven Model-Free Controllers PDF eBook |
Author | Radu-Emil Precup |
Publisher | CRC Press |
Pages | 402 |
Release | 2021-12-27 |
Genre | Technology & Engineering |
ISBN | 1000519589 |
This book categorizes the wide area of data-driven model-free controllers, reveals the exact benefits of such controllers, gives the in-depth theory and mathematical proofs behind them, and finally discusses their applications. Each chapter includes a section for presenting the theory and mathematical definitions of one of the above mentioned algorithms. The second section of each chapter is dedicated to the examples and applications of the corresponding control algorithms in practical engineering problems. This book proposes to avoid complex mathematical equations, being generic as it includes several types of data-driven model-free controllers, such as Iterative Feedback Tuning controllers, Model-Free Controllers (intelligent PID controllers), Model-Free Adaptive Controllers, model-free sliding mode controllers, hybrid model‐free and model‐free adaptive‐Virtual Reference Feedback Tuning controllers, hybrid model-free and model-free adaptive fuzzy controllers and cooperative model-free controllers. The book includes the topic of optimal model-free controllers, as well. The optimal tuning of model-free controllers is treated in the chapters that deal with Iterative Feedback Tuning and Virtual Reference Feedback Tuning. Moreover, the extension of some model-free control algorithms to the consensus and formation-tracking problem of multi-agent dynamic systems is provided. This book can be considered as a textbook for undergraduate and postgraduate students, as well as a professional reference for industrial and academic researchers, attracting the readers from both industry and academia.
Multi-Objective Optimization System Designs and Their Applications
Title | Multi-Objective Optimization System Designs and Their Applications PDF eBook |
Author | Bor-Sen Chen |
Publisher | CRC Press |
Pages | 292 |
Release | 2023-12-05 |
Genre | Technology & Engineering |
ISBN | 1000999521 |
This book introduces multi-objective design methods to solve multi-objective optimization problems (MOPs) of linear/nonlinear dynamic systems under intrinsic random fluctuation and external disturbance. The MOPs of multiple targets for systems are all transformed into equivalent linear matrix inequality (LMI)-constrained MOPs. Corresponding reverse-order LMI-constrained multi-objective evolution algorithms are introduced to solve LMI-constrained MOPs using MATLAB®. All proposed design methods are based on rigorous theoretical results, and their applications are focused on more practical engineering design examples. Features: Discusses multi-objective optimization from an engineer’s perspective. Contains the theoretical design methods of multi-objective optimization schemes. Includes a wide spectrum of recent research topics in control design, especially for stochastic mean field diffusion problems. Covers practical applications in each chapter, like missile guidance design, economic and financial systems, power control tracking, minimization design in communication, and so forth. Explores practical multi-objective optimization design examples in control, signal processing, communication, and cyber-financial systems. This book is aimed at researchers and graduate students in electrical engineering, control design, and optimization.
Handbook On Computer Learning And Intelligence (In 2 Volumes)
Title | Handbook On Computer Learning And Intelligence (In 2 Volumes) PDF eBook |
Author | Plamen Parvanov Angelov |
Publisher | World Scientific |
Pages | 1057 |
Release | 2022-06-29 |
Genre | Computers |
ISBN | 9811247331 |
The Handbook on Computer Learning and Intelligence is a second edition which aims to be a one-stop-shop for the various aspects of the broad research area of computer learning and intelligence. This field of research evolved so much in the last five years that it necessitates this new edition of the earlier Handbook on Computational Intelligence.This two-volume handbook is divided into five parts. Volume 1 covers Explainable AI and Supervised Learning. Volume 2 covers three parts: Deep Learning, Intelligent Control, and Evolutionary Computation. The chapters detail the theory, methodology and applications of computer learning and intelligence, and are authored by some of the leading experts in the respective areas. The fifteen core chapters of the previous edition have been written and significantly refreshed by the same authors. Parts of the handbook have evolved to keep pace with the latest developments in computational intelligence in the areas that span across Machine Learning and Artificial Intelligence. The Handbook remains dedicated to applications and engineering-orientated aspects of these areas over abstract theories.Related Link(s)
Nature-Inspired Computation and Swarm Intelligence
Title | Nature-Inspired Computation and Swarm Intelligence PDF eBook |
Author | Xin-She Yang |
Publisher | Academic Press |
Pages | 442 |
Release | 2020-04-10 |
Genre | Technology & Engineering |
ISBN | 0128197145 |
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.
Nature-Inspired Computation in Navigation and Routing Problems
Title | Nature-Inspired Computation in Navigation and Routing Problems PDF eBook |
Author | Xin-She Yang |
Publisher | Springer Nature |
Pages | 230 |
Release | 2020-02-19 |
Genre | Technology & Engineering |
ISBN | 9811518424 |
This book discusses all the major nature-inspired algorithms with a focus on their application in the context of solving navigation and routing problems. It also reviews the approximation methods and recent nature-inspired approaches for practical navigation, and compares these methods with traditional algorithms to validate the approach for the case studies discussed. Further, it examines the design of alternative solutions using nature-inspired techniques, and explores the challenges of navigation and routing problems and nature-inspired metaheuristic approaches.
Intelligent Data Engineering and Automated Learning – IDEAL 2021
Title | Intelligent Data Engineering and Automated Learning – IDEAL 2021 PDF eBook |
Author | Hujun Yin |
Publisher | Springer Nature |
Pages | 663 |
Release | 2021-11-23 |
Genre | Computers |
ISBN | 3030916081 |
This book constitutes the refereed proceedings of the 22nd International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2021, which took place during November 25-27, 2021. The conference was originally planned to take place in Manchester, UK, but was held virtually due to the COVID-19 pandemic. The 61 full papers included in this book were carefully reviewed and selected from 85 submissions. They deal with emerging and challenging topics in intelligent data analytics and associated machine learning paradigms and systems. Special sessions were held on clustering for interpretable machine learning; machine learning towards smarter multimodal systems; and computational intelligence for computer vision and image processing.