Natural Language Processing: Python and NLTK

Natural Language Processing: Python and NLTK
Title Natural Language Processing: Python and NLTK PDF eBook
Author Nitin Hardeniya
Publisher Packt Publishing Ltd
Pages 687
Release 2016-11-22
Genre Computers
ISBN 178728784X

Download Natural Language Processing: Python and NLTK Book in PDF, Epub and Kindle

Learn to build expert NLP and machine learning projects using NLTK and other Python libraries About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Work through NLP concepts with simple and easy-to-follow programming recipes Gain insights into the current and budding research topics of NLP Who This Book Is For If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable. What You Will Learn The scope of natural language complexity and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you process data better Tokenize text into sentences and sentences into words Classify text and perform sentiment analysis Implement string matching algorithms and normalization techniques Understand and implement the concepts of information retrieval and text summarization Find out how to implement various NLP tasks in Python In Detail Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages. The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy. The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods. The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python. This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products: NTLK essentials by Nitin Hardeniya Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur Style and approach This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.

Natural Language Processing with Python

Natural Language Processing with Python
Title Natural Language Processing with Python PDF eBook
Author Steven Bird
Publisher "O'Reilly Media, Inc."
Pages 506
Release 2009-06-12
Genre Computers
ISBN 0596555717

Download Natural Language Processing with Python Book in PDF, Epub and Kindle

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Natural Language Processing With Python

Natural Language Processing With Python
Title Natural Language Processing With Python PDF eBook
Author Frank Millstein
Publisher Frank Millstein
Pages 117
Release 2020-07-06
Genre Computers
ISBN

Download Natural Language Processing With Python Book in PDF, Epub and Kindle

Natural Language Processing With Python This book is a perfect beginner's guide to natural language processing. It is offering an easy to understand guide to implementing NLP techniques using Python. Natural language processing has been around for more than fifty years, but just recently with greater amounts of data present and better computational powers, it has gained a greater popularity. Given the importance of data, there is no wonder why natural language processing is on the rise. If you are interested in learning more, this book will serve as your best companion on this journey introducing you to this challenging, yet extremely engaging world of automatic manipulation of our human language. It covers all the basics you need to know before you dive deeper into NLP and solving more complex NLP tasks in Python. Here Is a Preview of What You’ll Learn Here… The main challenges of natural language processing The history of natural language processing How natural langauge processing actually works The main natural language processing applications Text preprocessing and noise removal Feature engineering and syntactic parsing Part of speech tagging and named entity extraction Topic modeling and word embedding Text classification problems Working with text data using NLTK Text summarization and sentiment analysis And much, much more... Get this book NOW and learn more about Natural Language Processing With Python!

Natural Language Processing

Natural Language Processing
Title Natural Language Processing PDF eBook
Author Samuel Burns
Publisher
Pages 140
Release 2019-10-10
Genre Natural language processing (Computer science)
ISBN 9781699028452

Download Natural Language Processing Book in PDF, Epub and Kindle

Natural language processing (NLP) is about developing applications and services that are able to understand human languages. In this perfect Natural Language Processing Tutorial, we will use Python NLTK library. Natural language toolkit (NLTK) is the most popular library for natural language processing (NLP) which was written in Python and has a big community behind it. This is the Ultimate guide to learn Natural Language Processing (NLP) basics, such as how to identify and separate words, how to extract topics in a text. You dont need a big and a boring book to start today . Get Your Copy Now!!Book ObjectivesThe book objectives include the following: To help you appreciate big data as a great source of information and knowledge. To help you understand natural language processing. To help you know how to use natural language processing to extract knowledge and information from big data. To help you learn how to implement natural language processing solutions using NLTK (Natural Language Processing Toolkit) and other libraries in Python. Who this Book is for? Do you belong to any of the following categories? You are a complete beginner to natural language processing. You want to learn Python programming for natural language processing. You want to advance your skills in Python for natural language processing. Professors, lecturers or tutors who are looking to find better ways to explain Natural Language Processing to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, Neural Networks, Machine Learning, Deep Learning, and Artificial Intelligence. If yes, this is the right book for you. What do you need for this Book? You only have to have installed Python 3.X on your computer. The author guides you on how to install the rest of the libraries on your computer. What is inside the book? GETTING STARTED WITH NATURAL LANGUAGE PROCESSING TEXT WRANGLING AND CLEANSING. REPLACING AND CORRECTING WORDS. TEXT CLASSIFICATION. SENTIMENT ANALYSIS. PARSING STRUCTURE IN TEXT. SOCIAL MEDIA MINING. NLTK FOR SENTIMENT ANALYSIS. SCIKIT-LEARN FOR TEXT CLASSIFICATION. WORK WITH PDF FILES IN PYTHON. WORK WITH TEXT FILES IN PYTHON. WORD2VEC ALGORITHM. NLP APPLICATIONS From the back cover.This comprehensive guide covers both statistical and symbolic approaches to Natural Language Processing. This is a good introduction to all the major topics of computational linguistics, which includes automatic speech recognition and processing, machine translation, information extraction, and statistical methods of linguistic analysis. Indeed, Natural Language Processing is the scientific discipline concerned with making the natural language accessible to machines, and it is a necessary means to facilitate text analytics by establishing structure in unstructured text to enable further analysis. This guide is a fundamental reference for any computational linguist, speech scientist or language data scientist. The explanations and illustrations in this short book are very intuitive and simple. The author helps you understand what natural language processing is. This is basically a theory touching on the fundamentals of natural language processing. The author then explains to you what the NLTK library is and what it does. The rest of the book is about implementing natural language processing tasks using the NLTK library in Python. Samuel Burns uses a combination of theory, Python code examples, and screenshots showing the expected outputs for various program codes.

Python Natural Language Processing Cookbook

Python Natural Language Processing Cookbook
Title Python Natural Language Processing Cookbook PDF eBook
Author Zhenya Antić
Publisher Packt Publishing Ltd
Pages 285
Release 2021-03-19
Genre Computers
ISBN 1838987789

Download Python Natural Language Processing Cookbook Book in PDF, Epub and Kindle

Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.

Python Natural Language Processing

Python Natural Language Processing
Title Python Natural Language Processing PDF eBook
Author Jalaj Thanaki
Publisher Packt Publishing Ltd
Pages 476
Release 2017-07-31
Genre Computers
ISBN 1787285529

Download Python Natural Language Processing Book in PDF, Epub and Kindle

Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.

Python 3 Text Processing with NLTK 3 Cookbook

Python 3 Text Processing with NLTK 3 Cookbook
Title Python 3 Text Processing with NLTK 3 Cookbook PDF eBook
Author Jacob Perkins
Publisher Packt Publishing Ltd
Pages 530
Release 2014-08-26
Genre Computers
ISBN 1782167862

Download Python 3 Text Processing with NLTK 3 Cookbook Book in PDF, Epub and Kindle

This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you’ve learned the limits of regular expressions the hard way, or you’ve realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful.