Natural Language Processing and Computational Linguistics
Title | Natural Language Processing and Computational Linguistics PDF eBook |
Author | Mohamed Zakaria Kurdi |
Publisher | John Wiley & Sons |
Pages | 296 |
Release | 2016-08-22 |
Genre | Technology & Engineering |
ISBN | 1848218486 |
Natural language processing (NLP) is a scientific discipline which is found at the interface of computer science, artificial intelligence and cognitive psychology. Providing an overview of international work in this interdisciplinary field, this book gives the reader a panoramic view of both early and current research in NLP. Carefully chosen multilingual examples present the state of the art of a mature field which is in a constant state of evolution. In four chapters, this book presents the fundamental concepts of phonetics and phonology and the two most important applications in the field of speech processing: recognition and synthesis. Also presented are the fundamental concepts of corpus linguistics and the basic concepts of morphology and its NLP applications such as stemming and part of speech tagging. The fundamental notions and the most important syntactic theories are presented, as well as the different approaches to syntactic parsing with reference to cognitive models, algorithms and computer applications.
Speech & Language Processing
Title | Speech & Language Processing PDF eBook |
Author | Dan Jurafsky |
Publisher | Pearson Education India |
Pages | 912 |
Release | 2000-09 |
Genre | |
ISBN | 9788131716724 |
The Handbook of Computational Linguistics and Natural Language Processing
Title | The Handbook of Computational Linguistics and Natural Language Processing PDF eBook |
Author | Alexander Clark |
Publisher | John Wiley & Sons |
Pages | 802 |
Release | 2013-04-24 |
Genre | Language Arts & Disciplines |
ISBN | 1118448677 |
This comprehensive reference work provides an overview of the concepts, methodologies, and applications in computational linguistics and natural language processing (NLP). Features contributions by the top researchers in the field, reflecting the work that is driving the discipline forward Includes an introduction to the major theoretical issues in these fields, as well as the central engineering applications that the work has produced Presents the major developments in an accessible way, explaining the close connection between scientific understanding of the computational properties of natural language and the creation of effective language technologies Serves as an invaluable state-of-the-art reference source for computational linguists and software engineers developing NLP applications in industrial research and development labs of software companies
Natural Language Processing and Computational Linguistics
Title | Natural Language Processing and Computational Linguistics PDF eBook |
Author | Bhargav Srinivasa-Desikan |
Publisher | Packt Publishing Ltd |
Pages | 298 |
Release | 2018-06-29 |
Genre | Computers |
ISBN | 1788837037 |
Work with Python and powerful open source tools such as Gensim and spaCy to perform modern text analysis, natural language processing, and computational linguistics algorithms. Key Features Discover the open source Python text analysis ecosystem, using spaCy, Gensim, scikit-learn, and Keras Hands-on text analysis with Python, featuring natural language processing and computational linguistics algorithms Learn deep learning techniques for text analysis Book Description Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis. What you will learn Why text analysis is important in our modern age Understand NLP terminology and get to know the Python tools and datasets Learn how to pre-process and clean textual data Convert textual data into vector space representations Using spaCy to process text Train your own NLP models for computational linguistics Use statistical learning and Topic Modeling algorithms for text, using Gensim and scikit-learn Employ deep learning techniques for text analysis using Keras Who this book is for This book is for you if you want to dive in, hands-first, into the interesting world of text analysis and NLP, and you're ready to work with the rich Python ecosystem of tools and datasets waiting for you!
Biomedical Natural Language Processing
Title | Biomedical Natural Language Processing PDF eBook |
Author | Kevin Bretonnel Cohen |
Publisher | John Benjamins Publishing Company |
Pages | 174 |
Release | 2014-02-15 |
Genre | Computers |
ISBN | 9027271062 |
Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.
Foundations of Computational Linguistics
Title | Foundations of Computational Linguistics PDF eBook |
Author | Roland Hausser |
Publisher | Springer Science & Business Media |
Pages | 541 |
Release | 2013-03-09 |
Genre | Computers |
ISBN | 3662039206 |
The central task of future-oriented computational linguistics is the development of cognitive machines which humans can freely speak to in their natural language. This will involve the development of a functional theory of language, an objective method of verification, and a wide range of practical applications. Natural communication requires not only verbal processing, but also non-verbal perception and action. Therefore, the content of this book is organized as a theory of language for the construction of talking robots with a focus on the mechanics of natural language communication in both the listener and the speaker.
Foundations of Statistical Natural Language Processing
Title | Foundations of Statistical Natural Language Processing PDF eBook |
Author | Christopher Manning |
Publisher | MIT Press |
Pages | 719 |
Release | 1999-05-28 |
Genre | Language Arts & Disciplines |
ISBN | 0262303795 |
Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.