Natural Function Algebras

Natural Function Algebras
Title Natural Function Algebras PDF eBook
Author Charles E. Rickart
Publisher Springer Science & Business Media
Pages 252
Release 2012-12-06
Genre Mathematics
ISBN 1461380707

Download Natural Function Algebras Book in PDF, Epub and Kindle

The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach alge bras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the re search on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous func tions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RIl]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of £unctions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural func tion algebras".

C*-Algebras by Example

C*-Algebras by Example
Title C*-Algebras by Example PDF eBook
Author Kenneth R. Davidson
Publisher American Mathematical Society, Fields Institute
Pages 325
Release 2023-10-04
Genre Mathematics
ISBN 1470475081

Download C*-Algebras by Example Book in PDF, Epub and Kindle

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topics include AF algebras, Bunce–Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at The Fields Institute for Research in Mathematical Sciences during the 1994–1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, $K$-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. Graduate students with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.

Function Algebras

Function Algebras
Title Function Algebras PDF eBook
Author Frank T. Birtel
Publisher
Pages 376
Release 1966
Genre Function algebras
ISBN

Download Function Algebras Book in PDF, Epub and Kindle

These Proceedings contain articles based on the invited addresses, submitted abstracts, and informal discussions at the International Symposium on Function Algebras held at Tulane University during April 19-24, 1965, under the joint sponsorship of the National Science Foundation (Contract No. GP-3438) and the Office of Naval Research (Contract No. NRO43-326). Research problems which appear in the Appendix were formulated and discussed on the final day of the Symposium. The term Function Algebras appearing in the title is used in its general, not its technical sense. Perhaps the more generic usage, Algebras of Functions, is advisable, but it seems pedantic to insist upon this fine semantic distinction. Thus the reader is cautioned. Within a given article, Function Algebra frequently means sup norm algebra or uniform algebra: a uniformly closed separating subalgebra of the continuous complex valued functions with 1 on a compact Hausdorff space. In titles the term is frequently used to indicate any algebra which consists of functions.

Uniform Fréchet Algebras

Uniform Fréchet Algebras
Title Uniform Fréchet Algebras PDF eBook
Author H. Goldmann
Publisher Elsevier
Pages 371
Release 1990-04-17
Genre Science
ISBN 0080872735

Download Uniform Fréchet Algebras Book in PDF, Epub and Kindle

The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.

Notes on Lie Algebras

Notes on Lie Algebras
Title Notes on Lie Algebras PDF eBook
Author Hans Samelson
Publisher Springer Science & Business Media
Pages 172
Release 2012-12-06
Genre Mathematics
ISBN 1461390141

Download Notes on Lie Algebras Book in PDF, Epub and Kindle

(Cartan sub Lie algebra, roots, Weyl group, Dynkin diagram, . . . ) and the classification, as found by Killing and Cartan (the list of all semisimple Lie algebras consists of (1) the special- linear ones, i. e. all matrices (of any fixed dimension) with trace 0, (2) the orthogonal ones, i. e. all skewsymmetric ma trices (of any fixed dimension), (3) the symplectic ones, i. e. all matrices M (of any fixed even dimension) that satisfy M J = - J MT with a certain non-degenerate skewsymmetric matrix J, and (4) five special Lie algebras G2, F , E , E , E , of dimensions 14,52,78,133,248, the "exceptional Lie 4 6 7 s algebras" , that just somehow appear in the process). There is also a discus sion of the compact form and other real forms of a (complex) semisimple Lie algebra, and a section on automorphisms. The third chapter brings the theory of the finite dimensional representations of a semisimple Lie alge bra, with the highest or extreme weight as central notion. The proof for the existence of representations is an ad hoc version of the present standard proof, but avoids explicit use of the Poincare-Birkhoff-Witt theorem. Complete reducibility is proved, as usual, with J. H. C. Whitehead's proof (the first proof, by H. Weyl, was analytical-topological and used the exis tence of a compact form of the group in question). Then come H.

Banach Function Algebras, Arens Regularity, and BSE Norms

Banach Function Algebras, Arens Regularity, and BSE Norms
Title Banach Function Algebras, Arens Regularity, and BSE Norms PDF eBook
Author Harold Garth Dales
Publisher Springer Nature
Pages 452
Release
Genre
ISBN 3031445325

Download Banach Function Algebras, Arens Regularity, and BSE Norms Book in PDF, Epub and Kindle

Abstract Linear Algebra

Abstract Linear Algebra
Title Abstract Linear Algebra PDF eBook
Author Morton L. Curtis
Publisher Springer Science & Business Media
Pages 175
Release 2012-12-06
Genre Mathematics
ISBN 1441987649

Download Abstract Linear Algebra Book in PDF, Epub and Kindle

Intended for a first course on the subject, this text begins from scratch and develops the standard topics of Linear Algebra. Its progresses simply towards its ultimate goal, the Theorem of Hurwitz, which argues that the only normed algebras over the real numbers are the real numbers, the complex numbers, the quaternions, and the octonions. The book stresses the complete logical development of the subject.